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Yet, a unique opportunity for optimization 
lurks behind the mobile aspect of today’s 
computing. With computation executed in 
an array of environments, user expectations 
with respect to result accuracy vary, as the 
result is further manipulated, interpreted, and 
acted upon in different contexts of use. For 
instance, a user might tolerate a lower video 
decoding quality when calling to say hi from a 
backpacking holiday, while she would expect  
a higher video quality when on a job interview 
call from an office. Similarly, when searching 
for nearby restaurant suggestions, rough 
location determination and a slightly shuffled 
ordering within the produced suggestion list 
would probably go unnoticed, whereas the 
same inaccuracies would not be tolerated 
when searching for driving directions. 

The result of a computation need not be 
perfect, just good enough for things to work.  

This opens up opportunities to save 
resources, including CPU cycles and 
memory accesses, thus, consequently 
battery charge, by reducing the amount 
of computation to the point where the 
result accuracy is just above the minimum 
necessary to satisfy a user’s requirements. 
This way of reasoning about computation is 
termed Approximate Computing (AC) and 
Approximate Computing Techniques (ACTs), 
which have already been demonstrated on 
various levels of computer architecture, from 
the hardware where incorrect adders have 
been designed to sacrifice result correctness 
for reduced energy consumption [1], to 
compiler-level optimizations that omit 
certain lines of code to speed up video 
encoding [2]. Experiments have shown 
significant resource savings, e.g., tripled 
energy efficiency with neural network-based 

approximations [3], or 2.5 times the speedup 
when certain task patterns are substituted 
with approximate code [4]. Ironically, to 
date, approximate computing remains 
mostly confined to desktop and data center 
computing, missing the opportunity of 
bringing the benefits to mobile computing. 
It is exactly in this domain where, due to 
context-dependent user requirements the 
occasions for adaptable approximation are 
abundant and where, due to the devices’ 
physical constraints, the applicability of 
alternative solutions for increasing the 
computational capacities, such as further 
component packing, is the lowest.

Recently, the necessary conditions for the 
emergence of a new paradigm – Approximate 
Mobile Computing (AMC) – have been all 
but fulfilled. First, hardware capabilities of 
mobile devices have reached the level that 
allows very complex on-device computation. 
This is especially true in the area of artificial 
intelligence, where neural processing units 
(NPUs), such as Qualcomm Zeroth, allow 
deep learning algorithms to be run locally on 
the device. Second, the growing popularity 
of mobile personal assistant applications, 
e.g., Google Assistant, Siri, Cortana, and 
Amazon Alexa, opens up opportunities 
for inexact computation. These apps are 
tightly integrated with the user, operate 
in varying contexts, are used for queries 
where no golden answer exists (e.g., for 
content suggestions), and rely on inherently 
probabilistic natural language processing 
and computer vision algorithms. Finally, as 
we turn to our mobile devices for a wider 
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TOWARDS 
APPROXIMATE  
MOBILE COMPUTING

hen Dennard scaling, a law describing the area-proportional 
growth of integrated circuit power use, broke down some- 

time in the last decade, we faced a situation where further 
transistor minimization suddenly required additional energy 

for operation and cooling. CPU manufacturers responded with multicore 
processors, as an alternative means to increase the floating-point operations 
per second (FLOPS) count. However, this too increases the energy 
consumption and, in addition, requires a larger silicon area. The most 
threatened by the stalled growth of per-Watt computing performance are 
pervasive mobile computers, nowadays present in anything from wearables 
to smartphones. Not only do these devices’ small form factor prevent 
further component packing, but the need for mobility also precludes 
bundling devices with large batteries.
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range of tasks, over longer periods of time, 
and in increasingly diverse situations, we 
are in a position to better understand users’ 
expectations from mobile computation. 

Making AMC a reality requires that we 
first resolve key doubts about how to enable 
approximation on mobile devices, how 
to infer a user’s context-dependent result 
accuracy expectations, and how to adjust the 
approximation so that the expectations are 
met in the most resource-efficient way. In the 
rest of the article we analyze the state of the art 
along these fronts and derive guidelines for 
future efforts in each of the fields.

STARTING POINT – CONVENTIONAL 
APPROXIMATE COMPUTING
A range of ACTs operating at all levels of the 
computing stack have been developed in the 
last ten years [5]. Hardware Layer Techniques 
include, for instance, approximate circuits, 
such as adders and multipliers that use low-
precision transistors for operations on the 
least important bits, and thus reduce energy 
requirements while sacrificing only a limited 
amount of result accuracy [1]. A technique 
presented in [6] is based on the observation 

that changes in high-order bits of video data 
tend to be easier to detect by the human eye 
than changes in low-order bits of data. High-
order bits of pixel data are thus stored in 
reliable memory segments, while low-order 
bits go to less reliable memory (Figure 2). 
The difference between the segments is in 
the DRAM refresh rate – the higher the rate, 
the more reliable the segment is, but more 
energy is needed for the storage.

One of the earliest Software Layer 
Techniques has been proposed by Rinard 
[7]. Here, a program is written as a set of 
tasks, whose execution can be discarded, 
should this lead to the execution speedup 
without a significant impact on the result 
quality. Another technique, approximate 
memoization [8], stores a limited number 
of function execution results, so that for 
subsequent function executions with similar 
input parameters one of the precalculated 
results is returned. The approximation can 
also be moved further down the stack. Loop 
perforation [2], a method developed at MIT 
that skips some of the loop’s iteration in order 
to reduce the amount of computation and 
save resources, has been implemented at the 
compiler level, enabling automatic application 
of the technique on selected loops. 

Can we implement approximate 
computation on mobiles?
The applicability of the above techniques 
to mobile devices must be examined 
through the lens of mobile computing 
constraints. Smartphones are highly 
versatile and expected to run an array of 
different applications in parallel. Many 
(especially hardware-based) techniques 
are often not flexible enough to support a 
mix of concurrently executed applications. 
A smartphone user might tolerate 
imperfect rendering in a 3D game, but 
data encryption protocols require perfectly 
accurate computations. One solution is to 
fit devices with both exact and approximate 
versions of the same hardware. However, 
this clashes with the portability-driven 
need for maintaining a small form factor. 
Another constraint comes from mobile 
apps’ interactivity – an average session with 
a smartphone lasts between 10 and 250 
seconds, while an average user performs 10 
to 200 such sessions in a day. This restricts 
applicable ACTs to those that are quick to  
set up and trigger. 

Challenges: The main obstacles towards 
exploring the benefits of approximation on 
mobiles are the lack of ACT implementations 
for mobile systems and the lack of support for 
writing and building approximate programs 
on mobile platforms. Regarding the former, 
selected ACTs need to be implemented in 
general frameworks for mobile application 
development. This could include the 
implementation of loop perforation at 
the level of the LLVM compiler used for 
compiling iOS applications, or supporting 
GPU processing kernel substitution with 
approximate implementations in NVIDIA 
CodeWorks for Android. Regarding the 
software writing support, ACTs often expect 
a developer to explicitly define parts of the 
program that may be executed approximately. 
Frameworks, such as Green [9], allow a 
developer to use  C++ annotations to both 
provide approximate versions of the code (e.g., 
alternative function implementations), as well 
as to indicated approximable code blocks  
(e.g., loops that need not be executed with a 
full number of iterations). The annotations are 
then used to instruct the compiler to generate 
a suitable approximate version of the program. 

Can we tell if a user is satisfied  
with the result quality?
Opportunities for approximation arise only 
when a user is satisfied with sub-accurate 
computation results. For instance, a user 
expects an activity tracking wristband to 
accurately monitor vital signs and recognize 
different movement patterns while exercising, 
yet the battery charge can be saved during 
non-exercise times, when the user merely 
expects the wristband to recognize a step  
so that the total count is taken. 

Pervasive use of mobile computing allows 
us to inspect how a user’s satisfaction with 
the delivered computation result changes 
with the context of use. Numerous aspects 
of the situation and the environment can 
impact a user’s perception of the result. 
Thus, we consider “context” to be a complex 
term, a view of which we obtain through 
a mobile device’s built-in sensors. For 
example, we can sense a user’s physical 
activity via a phone’s accelerometer, 
location via GPS, through a combination 
of light and location sensors we can infer 
whether a user is indoors or outdoors, and 
so on. Coordinating frequent sampling 
of a multitude of a device’s sensors, and 

FIGURE 1. Approximate Mobile Computing 
(AMC) departs from the rigidness of conven-
tional computing and increases resource 
efficiency by enabling a controlled reduction in 
result accuracy to the point defined by a user's 
context-dependent inaccuracy tolerance.
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FIGURE 2. Tiered reliability memory saves energy by storing low-order bits of pixel data into less 
reliable lower refresh rate (TLOW) memory segments (adapted from [6]).

storing and transferring the data can be a 
tedious task, with which dedicated sensing 
frameworks, such as AWARE [10] can help. 

In the second step, we need to monitor 
the use of an AMC application, deliver 
results of varying quality, and obtain 
information about a user’s satisfaction with 
the delivered result. Mobile experience 
sampling method (mESM) allows us to 
query the user about her recent experience 
immediately after the app usage session 
[11]. A well-designed study can minimize 
the number of queries and ask the user 
about the experiences in previously unseen 
situations only. The exact flavor of the 
questions asked depends on the application. 
Voice/video communication applications 
(e.g., Skype, Whatsapp), use simple Likert-
scale questions (e.g., number of stars 
corresponding to the quality of the call) to 
get a quick feedback on the service quality. 

Finally, machine learning lets us establish 
the link between the context, sensed at the 
time of querying, and the mESM answers, in 
order to model the change in result quality 
expectations in different situations. Such a 
model could, for example, learn that a user 
is satisfied with the personal assistant’s voice 
command comprehension, even if the speech 
recognition was run on an approximate 
neural network, as long as the app is used at 
home in the evening (we hypothesize that 
the lack of noise in the environment and a 
limited, predictable set of queries a user might 
issue in such a situation, e.g., “Set alarm for 
8 a.m.,” could be a confounding factor for a 
user’s satisfaction). 

Challenges: Context sensing is one of 
the most energy-expensive operations 
on a mobile phone. To capture user’s 
expectations in different situations, 
sensing and mESM querying might have 
to be performed each time the app is 
used. Furthermore, numerous aspects of 
the context can impact a user’s reaction, 
thus, sensing needs to be comprehensive 
and involve as many sensors as possible. 
For instance, a video call decoding quality 
requirements might depend on the level of 
outdoor brightness, the mode of transport 
that a user is on, but also on the relationship 
with the other party, or even the nature of a 
conversation. A potentially very large space 
defined by relevant contextual variables 
represents a major challenge, since frequent 
modification of the result accuracy, followed 
by querying, might irritate the user. 
Techniques such as active learning, where a 
user is queried about her experiences only if 
the existing model is unsure about the user’s 
reaction, or reinforcement learning that 
controls both the accuracy adaptation and 
querying so as to optimize a reward related 
to a user’s satisfaction and resource use 
represent interesting research avenues.

Can we dynamically adapt AMC  
to maximize resource savings while 
still satisfying a user's result quality 
expectations?
As discussed above, approximation may 
be tolerated only in certain situations. 
Consequently, we need a means for dynamic 
adaptation of the result precision. Such 

adaptation “knobs” have already been 
implemented with certain ACTs. Hoffmann 
et al. “hijack” and expose a for-loop iteration 
counter increments, so that a variable 
number of loop iterations can be skipped 
[13]. More effort is needed to expose similar 
“knobs” for numerous other ACTs. 

Once the knobs are exposed, we must 
know how to set them to achieve the desired 
result quality, as different amounts of ap-
proximation lead to different result accuracy 
and resource savings. Misailovic et al. built 
a Quality of Service (QoS) profiler that for a 
given program, given test input, and a QoS 
metric, calculates the loss of accuracy and 
the overall speedup under different approxi-
mation levels (brought by loop perforation) 
[2]. Combined with the model that describes 
how a user’s expectations depend on the 
context, the profiler output tells us how to 
set the approximation knobs in order to 
achieve the maximal savings and ensure that 
the result is acceptable for the user.

Challenges: Despite prior accuracy 
profiling, approximation adaptation needs 
to be recalibrated according to the run-time 
performance. Due to the discrepancies 
between the test and the actual input data, or 
due to a potential impact of the context on 
the calculation, the calculated result quality 
might not reach the previously estimated 
levels. However, even assessing the result 
quality is often expensive. In most situations, 
we can evaluate the quality only if the result 
of a perfectly accurate computation is 
available, defying the purpose of approxi- 
mation. Laurenzao et al show that in image 
approximation it suffices to evaluate the 
result quality on small representative 
snippets of data [14], yet this might not 
generalize to other domains. In addition, 
the app needs to have the information about 
the current context in order to adapt to it. 
The key question of AMC – whether the 
benefits enabled by approximate execution 
surpass the cost of context sensing and the 
adaptation – will be answered once the first 
AMC prototypes are completed and tested.

THE ROAD AHEAD
The overarching goal of AMC is to enable 
further proliferation of mobile computing 
by drastically reducing the resource require-
ments of modern apps, while ensuring that 
users’ needs are satisfied. Opportunities for 
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approximation appear in certain contexts, 
as they are conditioned on a user’s context-
dependent perception of the result. In 
Figure 3 we sketch three broader directions 
that research should take in order to make 
AMC the reality. Namely, 1) implementing 
ACT support and understanding the ben-
efits  of approximation in mobile devices 2)  
building a framework for sensing the 
context, querying the user’s expectations, 
in order to model the relationship between 
the context and users’ accuracy needs, and 
3) devising a system for monitoring and 
controlling the approximation. 

In this article we raised certain 
challenges pertaining to each of the steps. 
However, they are by no means exhaustive, 
nor detailed enough. For instance, 
resource savings brought by a single app’s 
modification are notoriously difficult to 
evaluate on mobile devices, as the cost of 
a component usage (e.g., a GPS chipset) 
depends on its previous state, which may be 
affected by other apps on the phone [15]. 

Yet the main challenge of AMC stems 
from its highly interdisciplinary nature. 
Efforts by computer architecture, compilers, 
and programming languages experts are 
needed to bring ACTs to mobiles; human-
computer interaction (HCI) and mobile 
sensing experts can help with understanding 
users’ result accuracy expectations; mobile 
system and control theory experts should 
contribute towards controlling dynamic 
approximation adaptation. The topic of 
approximate computing has already gained 
a lot of traction within programming 
languages, formal verification, and computer 
architecture communities. This is witnessed 
by a number of specialized workshops, 
such as “Workshop On Approximate 
Computing” with “High Performance and 
Embedded Architecture and Compilation 
Conference (HiPEAC)”, and “Workshop on 
Approximate Computing Across the Stack” 
with “Programming Language Design and 
Implementation Conference (PLDI),” as 
well as special journal issues on the topic, 
such as a recent IEEE Micro Approximate 
Computing issue. However, to date, mobile 
computing, mobile sensing, and mobile 
HCI communities left the topic virtually 
untouched. With this article we hope to 
start the conversation and mobilize a wider 
research community towards making 
approximate mobile computing a reality. n
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