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In this paper, we discuss our experience in building an automated dance assessment tool with IMU 
and IoT devices and highlight the major challenges of such an endeavor. In a typical dance classroom 
scenario, where the students frequently outnumber their instructors, such a system can add an 
immense value to both parties by providing systematic breakdown of the dance moves, comparing the 
dance moves between the students and the instructors, and pinpointing the places for improvement 

in an autonomous way. Along that direction, our prototypical work, HappyFeet [1], showcases our initial 
attempts of developing such an intelligent Dance Activity Recognition (DAR) system. Our CNN based 
Body Sensor Network proves more effective (by ≈7% margin at 94.20%) at accurately recognizing the 
micro-steps of the dance activities than traditional feature engineering approaches. These metrics are 
derived by purposely evaluating the setup on a dance form known for its gentle, smooth and subtle limb 
movements. In this paper, we articulate how our proposed DAR framework will be generalizable for 
diverse dance styles involving very pronounced movements, human body kinematics and energy profiles. Ph
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With the proliferation of wearable sensors 
and IoT devices over the last few years, 
exciting new applications are evolving 
every day that exploits their ubiquity for 
breaking new ground in health care, sports, 
fitness and entertainment. Similarly, an 
automated dance activity recognition 
and assessment framework poses unique 
opportunities and challenges. Modeled as 
a learning companion for aspiring dancers 
and a teaching aid for instructors, the 
detailed identification, deconstruction 
and comparison of the dance moves 
can become a great explorative tool to 
augment and, in some cases, supplant the 

traditionally crowded dance classrooms 
and unidirectional teaching methodology. 
It can provide the instructors with an in-
depth breakdown of the dance moves that 
individual students are having difficulties 
performing (where and by how much) and 
help to give personalized feedback that is 
tailored towards each student’s physical 
attributes, dexterity and training level. 

We share our experience in building 
an early prototype, HappyFeet [1], a dance 
activity recognition framework, in this 
paper. We discuss the relevant details of 
sensor architecture, ground truth annotation 
and activity recognition model development. 
We specifically elaborate on the challenges 
we faced during the optimization of the 
number, types and placement of the 
IMU sensors, handling the heterogeneity 
(introduced by sensors of different make 
and native sampling frequency) and dealing 
with missing data points (from faulty sensor 
and application stack), synchronization of 
multiple sensor data streams, maintenance 
of granularity and precision during ground 
truth data annotation. We also posit 
the challenges in defining a scoring and 
comparison metric for assessing individual 
dance performances. 

The rest of the paper is organized 
as follows. We start by defining the 
ideal characteristics of a Dance Activity 
Recognition (DAR) System. Next, we 
elaborate the hurdles and rationale for our 
IMU setup. We also discuss the different 
tools and techniques used during the 
annotation process. Finally, we share our 
insights on the scoring process.

IDEAL CHARACTERISTICS  
OF A DAR SYSTEM
We have investigated existing tools, frame- 
works and hardware solutions for dance 
activity recognition in our preliminary 
study [1], however we have yet to find a 
system specifically designed to handle 
the dance classroom environment in 
an automated way. Most of the existing 
works are primarily focused on providing 

entertainment value, but they are not 
optimized to handle a large number 
of participants, and they often rely on 
depth sensing or heavyweight pressure 
sensing, which restricts the participants’ 
movement zones. We define a Dance 
Activity Recognition (DAR) system as: 
a combination of hardware and software 
solutions specifically designed to identify 
and assess the grammar, pace, sequence, 
directions, limb rotation and facial 
expressions of different dance steps (at 
changing granularities) with minimal 
human intervention. We postulate that an 
ideal Dance Activity Recognition (DAR) 
system should embody the following 
functional characteristics:

(i) It should minimize the number of 
sensors required to achieve sufficient 
accuracy in identifying the details of the 
micro-dance steps.
(ii) It should utilize commodity sensors 
and cameras and help minimize costly/
proprietary sensor usage.
(iii) It should conduce a real-time data 
collection, annotation, training/inference 
and user-feedback pipeline with an end-
to-end solution.
(iv) The DAR system should warrant 
minimal/no technical knowledge from 
the end users’ perspective to achieve full 
runtime functionality.
(v) The sensor placement, annotation and 
feedback process should be minimally 
intrusive and distracting, so as not to 
obstruct the natural dance learning 
environment of the dancers.
(vi) The learned model should be 
interpretable from the instructors’ 
perspective so that they can understand 
the nature and extent of the mistakes the 
students make to provide better feedback.

In this paper, we describe how we  
tried to fulfill some of these requirements 
during our early prototype development  
of HappyFeet [1] and discuss how the rest 
of them can also be accomplished.
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OPTIMIZING OUR IMU SETUP
Dance is an art form that involves sequenced 
and rhythmic movements of human limbs. 
Because of the complexity of the movement 
kinematics, gestures and postures of 
human body and mind, and cognitive and 
physical variability across students, dance 
can be categorized as one of the most 
challenging human activity recognition 
problems. Recognizing the dance activity is 
fundamentally different from recognizing 
and learning the traditional Activities of 
Daily Living (ADLs). Dancing requires 
grace and finesse, and involves repetitive 
movements of the fingers, hands, forearms, 
elbows, arms, legs, toes, waist, heads, etc., 
in a rhythmic fashion. It also reflects the 
delicacy and rhythm of different postures 
along with the cognitive ability and physical 
fitness of an individual. One step alone may 
consist of multiple micro steps, which span 
across the various movements of legs, hands, 
fingers, shoulders, elbows, etc. Capturing 
these movements with a minimal number of 
motion (accelerometer) and vision (camera) 
sensors, recognizing and delimiting these 
micro steps, and defining a repetitive pattern 
to recognize an entire dance episode are 
non-trivial activity recognition problems. 
This makes a Dance Activity Recognition 
(DAR) system [1] unique in its own context 
than in the traditional Human Activity 
Recognition problems [2]–[8]. While a single 
IMU sensor is often enough for capturing 
and classifying a lot of ADLs to capture 
acceptable details of the dance steps, we 
realized that more sensors were required. 
We also argue that the type of dance being 
classified plays a role in selecting the number 
and placement of sensors. One might be able 
to capture a feet-heavy dance performance 
(e.g., waltz) with two sensors in the ankles 
or just one at the hip, but for capturing 
a jazz dance session, those might not be 
adequate. In our experiment, we chose to 
study a classical Indian dance style: Lasya, 
a subcategory of Manipuri [9] dance form, 
which is noted for its gentle, smooth and 
subtle limb movements. Our justification for 
this deliberate choice was that the developed 
detection and assessment methodology 
should be applicable for dance styles involving 
much pronounced movements and energy 
profiles, which are easier to detect.

Figure 1 shows an example of a 
choreography that we used in one of our 

sessions. We designed a specific dance 
script for lasya, which a beginner would 
learn during the first few dance sessions. 
Four accelerometer sensors are placed on 
the limbs: two on the wrists and the others 
on both ankles. We have 10 different dance 
steps during a session that is described 
in Figure 3. As we can see, depending on 
the dance steps being performed, certain 
sensors show more pronounced activity 
than the other sensors. For example, for 
Step 1 (wave both hands from left to right), 
the wrist sensors show more activity than 
the ankle sensors, but for step 2 (step right 
leg forward), the left ankle sensor shows 
more activity than the others. We ran our 
experiment incrementally with different 
combinations of the number of sensors and 
placement, and concluded that for our case, 
at least four sensors are needed to achieve 
high accuracy (above 90%).

COMPLEXITIES WITH  
MULTIPLE IMU SENSORS
Using multiple IMU to collect detailed 
data of the dance steps has its drawbacks, 
the first one being the added cost of the 
sensors. Utilization of inexpensive sensors 
or allowing the students to use their 
personal wearable devices can help lower 
the cost. We experimented with several 
off-the-shelf sensors: ActiGraph wGT3X-
BT, Empatica Embrace and E4, Microsoft 
Band and Fitbit Flex (compared in Figure 
2). This introduced a new set of challenges 

for us: Fitbit Flex API only allowed for data 
extraction of 1/60 Hz sampling frequency, so 
it is totally unsuitable for high speed activity 
detection, such as dance. Each Empatica 
E4 costs 1500 USD, and the Embrace only 
has a sampling frequency of 32Hz. The 
Microsoft Band failed the Zero-G test 
(when kept at rest it is supposed to show a 
constant 1g acceleration but our readings 
were contaminated with noise). We also 
found that the companion app for Microsoft 
Band had constant connectivity issues. 
The sampling rate did not stay constant 
throughout our data collection session and 
random data points would often go missing. 
The nature of data storage of the sensors is 
also very critical in assessing their usability 
in DAR system design. Dedicated activity 
trackers, such as ActiGraph wGT3X-BT, 
Empatica Embrace and E4, primarily store 
the collected data offline inside the sensor’s 
memory. The data needs to be transferred 
to a PC through a physical connection and 
using the vendors’ proprietary application 
stack, which impedes real-time data 
processing. These sensors do have Bluetooth 
data transfer options to smartphones via 
their SDK, but the licensing price can 
be steep. So, for most practical cases, 
these sensors are limited by their offline 
storage space. Conversely, general purpose 
wearable sensors, such as Microsoft Band 
and Fitbit, often stream data to a Bluetooth 
paired phone or directly in a cloud without 
any added cost, hence creating more 

FIGURE 1. Accelerometer signals of different activities captured from four actigraph sensors.
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flexibility for real-time stream analysis. At 
the end, we selected ActiGraph wGT3X-
BT as the primary sensor for our initial 
experiment, as it had a high sampling 
rate (100Hz), passed Zero-G test, had 
relatively high dynamic range (±G) and 
had a moderate price among the sensors, 
but this setup also forced us to use offline 
processing. 

Redundant data were collected by two 
Microsoft Bands and one Empatica E4 by 
placing them on wrists and the waist, so that 
we could analyze heterogeneity issues. We 
realized that when combining the inertial 
data collected from multiple sensors with 
different makes and models, three main types 
of Heterogeneity [10] problems can arise:

(i) Sensor Bias, which is caused by the 
difference in precision, resolution and 
range values of the devices.

(ii) Sampling Rate Heterogeneity, which 
occurs when at least two devices start 
collecting data at two different sampling 
rates (e.g. 100Hz vs 79Hz).
(iii) Sampling Rate Instability, which is the 
irregularity between successive timestamps 
of consequent data points.

In addition to these, missing data 
points due to faulty sensors or software 
can introduce heterogeneity challenges 
and these heterogeneities cannot be fixed 
easily by simple up-sampling/interpolation 
techniques.

USING VIDEO TO ANNOTATE 
ACCELEROMETER STREAMS 
Annotation of dance activities is 
challenging, as the duration of each activity 
is very small, and the activity classes 
alternate or change frequently, unlike 

activities of daily living. For example, with 
a 60Hz sampling frequency, a micro dance 
step of 800 millisecond only gives 48 data 
points, a simple overlapped labeling by 
400 milliseconds therefore translates to a 
50% labeling error. Such incorrect labeling 
with adjacent classes drastically affect 
the classification accuracy, and the usage 
of multiple IMU compounds the errors. 
The hardware clock of the IMU needs 
to be synchronized with others down to 
millisecond level granularity or we run 
the risk of severe labeling error again. In 
a controlled lab experiment, this extra 
synchronization overhead might not be a 
major issue, but in a live dance classroom 
environment, it can become quite difficult. 
The next challenge lies in the utilization 
of proper tools to visualize the IMU data 
streams, so that the teachers and dancers 
can annotate their own dance sessions. 
Unlike other Activities of Daily Living, the 
dance micro-steps can be very specific to a 
choreography, the preference of the dance 
instructor and the training and dexterity 
level of the students. Due to the wide 
variety of possible choreography within a 
single dance genre, each dance lesson might 
require relabeling of the micro-steps even 
though they are thematically very similar. 
This low generalizability also means the 
activities cannot be annotated without the 
help of the domain experts (e.g., dance 
instructors or students) and frequent 
manual labeling needs more attention. 

Even with visualizing the data points 
from the IMU sensors through graphs/
charts, the data streams are difficult to 
interpret, let alone pinpoint the labeling 
boundaries for the individual steps. To go 
around this problem, we recorded each 
dance session using a video camera at 60 
frames per seconds and let the dancers 
identify and annotate the dance steps from 
the video rather than the IMU data. After 
that, synchronization of the video with 
IMU data streams remains the only tricky 
part. To streamline the synchronization 
of the signals from each IMU sensor, the 
video and the time stamps associated with 
them, we used ELAN software [11]. At the 
start of each dance routine, the participants 
were asked to jump as high as possible three 
times. These three jumps showed a peak 
in the resultant acceleration signal. The 
annotator used the peaks to synchronize 

FIGURE 2. Comparison of sensor properties.

FIGURE 3. Details of the dance steps.
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Devices

Price

Max. Sampling
Frequency

Sensor Biases
(Zero g test)

Actigraph
wGT3X-BT

100Hz

Passed

$249

Empatica
Embrace

32 Hz

Passed

$169

MS Band

128 Hz

Failed

$149

Fitbit Flex

1/60 Hz

N/A

$225

1. 	 Waving both hands  
	 from left to right
2. 	 Stepping left leg forward
3. 	 Clockwise rapid  
	 rotational movement

4. 	 Taking two forward steps 
	 with extended arms
5. 	 Anti-clockwise rotational 
	 movement
6. 	 Move both wrists to left side

7. 	 Clockwise step-by-step 
	 slow rotation
8. 	 Anti-clockwise step-by- 
	 step slow rotation

9. 	 Clockwise rapid tiptoe  
	 rotation
10. Anti-clockwise rapid 
	 tiptoe rotation
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the sensor data stream and the video feed, 
all at the same time. We deduced the starting 
and ending frame for each of the micro level 
dance moves and labeled them accordingly. 
When doing the alignment, we noted the 
video and accelerometer synchronization 
offset. With this information, we could 
derive the standardized time stamps across 
devices and crop the data that is of interest. 
Because of the initial clock synchronization, 
all sensor samples are also properly aligned 
with each other in the end. Figure 4 shows 
the data alignment and annotation process 
with ELAN software [2].

CHALLENGES IN DEVELOPING  
A SCORING METRIC
The main modus operandi of a DAR 
platform is to automatically learn the 
dance steps from the instructor’s dance 
routines, and then use that as a template to 
understand, classify and score the students’ 
dance steps that follows. The whole process 
can be divided into three major steps:

(i) Accurately recognize the individual 
dance steps performed by the instructor.
(ii) Create a generalizable model from 
the instructor’s model, so that it can be 
applied to recognize the same dance steps 
performed by the students.

(iii) Scoring the dances according to a 
well-defined criterion that can be used by 
the instructor to pinpoint what the students 
are doing wrong and provide corrective 
feedback. 

Transferring a generalizable “knowledge” 
from the instructor’s model to that of the 
students can be tricky as, due to their 
different physical attributes, the dances 
from trained dancers will vary widely 
with respect to correct dance moves. The 
algorithm needs to generalize to an extent 
to capture the “essence” of the dance 
without penalizing the natural variations 
due to the students’ natural physical traits. 
This property should also be maintained 
when deriving the scores of the dance 
routines. A balanced scoring mechanism 
needs to take the following attributes 
into consideration when calculating the 
student scores: (i) timing, (ii) rhythms, 
(iii) shape of arm position while dancing, 
(iv) maintaining healthy position while 
dancing, (v) posture, body, knee & foot 
alignments, (vi) dynamic alignments 
of head, rib, and pelvis, (vii) centers of 
hip and balance and (viii) efficiency of 
movements. Dynamic alignment of the 
body is important for dance training, as 
it’s easy for dancers to place themselves in 

alignment while they are stationary, but it 
becomes challenging when they are moving 
through space. The next critical aspect is 
the “timing.” When the students start out 
a dance form, they generally try to follow 
a slow pace and pick up speed as they 
become more familiar and proficient with 
the steps. Both the detection and scoring 
algorithm need to be able to accommodate 
both the slower and faster version of the 
dance performance.

We have tried a simple scoring mechanism 
by training the model with the instructor’s 
dance steps and then testing the model 
out on three students’ performance. We 
calculate the confusion matrix on the 10 
dance steps to get some idea on which 
dance steps the students are having 
trouble with. In the initial dance session, 
the students scored 23%, 12% and 26% 
respectively in terms of accuracy. While this 
crude approach is good for initial analysis, 
we believe that the model is too simplistic 
to capture the “essence” of the dance 
and therefore penalizes students whose 
movement patterns are quite different 
from that of the instructor. Moreover, all 
the students in our experiment were male, 
whereas the instructor was female, and we 
suspect that this might affect the scores  
of the students to some extent.

[(ALMOST) UNPUBLISHABLE RESULTS]

FIGURE 4. Synchronization of the video and IMU data.
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FUTURE CHALLENGES
To build a real-time, low-cost and low-
maintenance DAR platform that can 
accommodate heterogeneities discussed 
previously, we propose a Homogenization 
Module. By collecting a large amount of 
unlabeled data dance performances with 
redundant sensors on the same limb where 
a costly high precision offline sensor is 
paired with a cheaper low precision online 
sensor, deep learning models can be 
trained to learn the intrinsic probability 
distribution of the dance activities. 
These deep models can later be used to 
reconstruct missing data points or remove 
bias/errors from the low precision sensor 
data streams. Sampling Rate Instability is 
analogous to image in-painting problems 
in computer vision domain and Sampling 
Rate Heterogeneity parallels audio and 
image super-resolution. Therefore, we 
propose to leverage well-studied models 
for those problems, such as Convolution-
Deconvolution networks [12], and 
generative models, such as Restricted 
Boltzmann Machine (RBM)[13] and 
Generative Adversarial Networks [14]  
in our future studies.

In HappyFeet [1], we only focused on 
using IMU sensors; the accelerometer and 
gyroscopes (that are built into most modern 
smart watches) provide a very convenient 
and cost-effective way to capture dance 
activities. Their wearable nature gives the 
user unparalleled flexibility on the place 
and time of their performance. 3-axis 
acceleration and angular velocities provide 
a very detailed albeit local 3D view of 
the movement performed without much 
computational complexity. However, in a 

large classroom environment even the cost 
of cheaper IMU can gradually add up to a 
significant amount. These sensors are also 
very sensitive to the precise placement on 
the body, which might not be possible all 
the time during strenuous dance sessions. 
Hence, we believe that a secondary 
modality of data capture mechanism is 
required to build a cost-effective and 
reliable DAR system. Depth sensing has 
been traditionally used for capturing 
3D movement data and human action 
recognition for many years. Marker based 
motion capture and depth inference from 
stereo cameras can be expensive and not 
practical for a classroom scenario. Infrared 
depth sensing (e.g., Microsoft Kinect) 
provides a very reliable way to capture 3D 
human performance data and is capable of 
tracking up to six human skeletal motions 
in a 70.6 by 60 degrees FOV in real time, 
but these values are still inadequate for a 
large classroom environment and the setup 
is still expensive. Recent advances in deep 
learning–based pose estimation models, 
such as OpenPose [15] and DensePose [16]  
has shown that it is possible to create real 
time posture key-point detection and 
tracking with commodity hardware, at a 
considerably lower infrastructural cost. 
An appropriately placed single camera 
can capture the dance performance of a 
roomful of people and the inferred key 
points (skeletal joints shown in Figure 
5, and the resulting skeletal model can 
be used to accurately classify a broad 
range of human activities [17]. However, 
vision-based approaches, especially with 
single camera, have their own limitations, 
such as sensitivity to lighting conditions, 

occlusion, background clutter and limited 
field of view. The issues can be mitigated by 
using multiple cameras, but that increases 
the setup complexity and cost. Most 
commodity video cameras rarely record 
at more than 60 frames per second, while 
most inertial sensors can easily go beyond 
100Hz. Vision and depth-based models 
can estimate the whole-body posture 
with great efficiency, however, it cannot 
estimate the micro level movements of the 
limbs with high accuracy, something the 
inertial sensor-based systems excel at [18]. 
Therefore, we conclude that a multi modal 
view of the dance moves that efficiently 
fuses complementary input from visual 
and inertial sensors would be the optimum 
solution when assessing dance moves in a 
group setting. There are multiple ways to 
build the fusion model such as:

(i) Using the IMU data streams to create  
a calibrated vision model; 
(ii) Tracking the 3d skeletal joints and 
using those to augment IMU streams;
(iii) Concatenating the visual and inertial 
features in a joint model.

As ELAN is a specialized software 
targeted at researchers, it is not intuitive 
enough to be used by the dance instructors 
and students by themselves. Also, this 
annotation process is offline; there is 
significant delay between the dance capture 
and feedback generation for the dancers, 
which can be an additional overhead 
and source of distraction for them. The 
tedious manual labeling can take a long 
time depending on the length of the dance 
session. To streamline the process of 
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FIGURE 5. Classroom scenario of a dance session. Courtesy of http://smc.edu/AcademicPrograms/Dance

RECOGNIZING THE 
DANCE ACTIVITY IS 
FUNDAMENTALLY 
DIFFERENT FROM 
RECOGNIZING 
AND LEARNING 
THE TRADITIONAL 
ACTIVITIES OF DAILY 
LIVING (ADLs)
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