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t a very high level, all those 
applications recognize patterns. 
Predictions for today’s data are 

based on patterns that have been deemed 
useful in the past. For example, a specific 
sequence of words in an email, i.e., a 
pattern, may lead the algorithm to tag 
the incoming email as spam. Concretely, 
a spam filter parses an incoming email, 
looking for a number of textual patterns. 
Based on the result, a score is computed, 
which determines the decision about 
whether or not to flag this email as spam. 

Classical machine learning techniques 
require careful engineering of those 
patterns, also referred to as features of 
the data. Designing features is a time 
consuming and labor intensive process, 
which often requires a significant amount 
of domain expertise. As a result, the 
approach is hard to scale.

Deep learning, in contrast, subsumes 
machine learning tools, which use the raw 

data as input, and automatically infer the 
patterns that are needed to achieve good 
results for the considered task. To this end, 
deep learning algorithms extract multiple 
levels of abstractions from the raw data 
by successively transforming the provided 
input [20]. Consecutive layers transform 
the data into an increasingly abstract 
representation, which is semantically 
meaningful. Importantly, while the type of 
computations performed in each layer are 
specified by humans to be operations, such 
as matrix multiplications or convolutions, 
their parameters and hence the extracted 
features are not predetermined.

As a consequence, compared to 
classical machine learning algorithms, 
deep learning is more scalable when 
considering human labor, and does not 
require significant domain expertise for 
the considered task beyond understanding 
input and desired output. It has hence lead 
to a flurry of applications that can now 
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AN ELEVATOR  
PITCH ON  
DEEP LEARNING
Machine learning improves all aspects of our life and very few 
days pass where we don’t interact with a machine learning driven 
application. For example, we may use fitness trackers that monitor the 
quality of our sleep. Before leaving to work, we may check the weather 
forecast. To get to work, we use a navigation system that predicts 
the fastest route to our first meeting. On the road, we use voice 
commands to interact with our phone. Web searches and e-commerce 
recommendations are based on machine learning. Cameras detect 
faces when we take a picture and our email inboxes are protected by 
spam filters, which are designed using machine learning tools.
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machines to learn the weights w. This process 
is called training or supervised learning. To 
train the parameters we construct a dataset 
D, which contains pairs of input data x, i.e., 
emails, and its corresponding desired true 
output yT , informing us about whether the 
email should be considered spam. Formally, 
the dataset contains pairs (x, yT ) which 
constitute the supervision that we provide  
to the learning algorithm. Note that both 
spam and regular emails are required in  
our dataset D.

During training, we find the parameters 
w by comparing our current prediction 
y* with the provided desired output, i.e., 
the groundtruth. If the current prediction 
agrees with the groundtruth for a pair 
(x, yT ), the parameters w of the scoring 
function are not modified. If, in contrast, 
the current prediction does not agree with 
the groundtruth, we adjust the parameters 
in a direction that could correct this error. 
Note that this adjustment can be computed 
easily for many useful types of scoring 
functions F(x, y, w).

In practice, instead of using a single 
datapoint (x, yT ), we often use a set of 
examples at a time, average their output 
error, and adjust the parameters according 
to the average. We repeat this process for 
many small subsets of examples extracted 
from the entire training set D, until the 
error does not change significantly. This 
technique is referred to as stochastic 
gradient descent with mini-batches and 
performs surprisingly well in general.

Upon having completed training, it is 
useful to test the model parameters w by 
assessing their performance on examples 
that we haven’t used for training, i.e., the 
test set. This quality control ensures that 
our approach generalizes to data that the 
algorithm has never observed before. 
Multiple cases should be differentiated. 
First, the model may perform well on the 
training set and slightly worse on the test 
set, which is the desired behavior. Second, 

be addressed by machine learning wizards 
joining forces with domain experts.

However, deep learning methods are 
known to be very data hungry, often 
requiring thousands of data points. In 
addition, they are also known to being 
computationally very expensive, requiring 
computational resources that can only be 
provided by recent accelerators, such as 
graphics processing units (GPUs).

In the following, we first provide a high-
level introduction to machine learning in 
general and deep learning specifically. We 
then discuss a series of applications that 
have been addressed using the presented 
techniques, before we conclude with remarks 
on future directions for deep learning.

DEEP LEARNING PRIMER
To describe the machine learning concept, 
we consider the spam filtering task as an 
example. Slightly more formally, we use x 
to refer to a data point, i.e., an email in our 
case. Note that x may encompass all kinds 
of data that we possess beyond the text 
itself, e.g., header information etc. Given 
data about an email, x, we want to predict 
whether it is spam or not. We use a variable 
y to indicate this choice. Since y is the output 
of the system, it is often referred to as an 
output space variable. For our example, y = 1 
indicates the email is spam, and y = 0 refers 
to a regular email.

For every incoming email, our system 
may produce two real-valued numbers, i.e., 
two scores, assessing the degree to which the 
system thinks an email is spam or regular. 
In general, we refer to the score using F(x, y, w), 
which provides the assessment for regular 
mail, F(x, 0, w) ∈ R, and the assessment 
for spam mail, F(x, 1, w) ∈ R. Based on the 
magnitude of the score we flag an email x  
to be spam if F(x, 1, w) > F(x, 0, w). Beyond 
the data, the score also depends on some 
parameters w, often called weights.

Machine learning refers to techniques 
for adjusting the parameters w, i.e., for using 

the model may perform well on the training 
set and poorly on the test set. Third, the 
model may perform poorly on both the 
training and test set. In the second case 
the model does not generalize, which may 
be caused by overfitting to the specifics of 
the training data. Possible solutions are to 
increase the training data or to simplify 
the model complexity. The third case could 
be addressed by increasing the model 
complexity.

Some of the least complex models are 
linear models, such as logistic regression 
[8, 29] or support vector machines [7]. 
Hereby, the score function F(x, y, w) 
depends linearly on the parameters w and 
a vector of features ϕ(x, y), i.e., F(x, y, w) = 
wT ϕ(x, y). This vector of features used to 
be hand-crafted, e.g., in case of email spam 
filters, each entry in the vector ϕ(x, y) refers 
to a specific textual pattern. For example, 
a feature indicates the number of times the 
word “drug” occurs minus 0.5 if y = 1, or 
0.5 minus the number of times the word 
“drug” occurs if y = 0. Each of those natural 
language patterns is then combined linearly 
to compute a score. In the following, let 
n denote the number of times the word 
“drug” occurs in an email. Intuitively, if the 
discussed feature is the only feature, and 
its corresponding weight w is positive, the 
algorithm predicts an email to be spam if 
the word “drug” occurs at least once, since 
F(x, 1, w) = n − 0.5 > F(x, 0, w) = 0.5 − n if 
the number of times the word drug occurs 
is larger than 0.5, i.e., if n > 0.5.

Interpretability as an advantage of a linear 
scoring function is immediately obvious 
from this example. Moreover, assuming all 
features to be roughly normalized, the scale 
of the weight determines the importance of 
the feature. However, a linear score function 
is also very simple. Intuitively, the decision 
boundary between the two classes ‘spam’ 
(y = 1) and ‘not spam’ (y = 0) is linear as 
shown in Figure 1(a). It is hence the job 
of the domain expert to find features that 
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ensure almost linearly separable data points 
and hence good classification performance. 
A significant amount of domain expertise is 
required to design suitable features such that 
a linear decision boundary achieves a good 
performance on a given dataset D.

However, it is difficult to design features 
such that the data is linearly separable. 
One possible solution is to increase the 
complexity of the model, e.g., by using a 
non-linear score function. Given the same 
training data points, the decision boundary 
of a non-linear scoring function as shown in 

Figure 1(b) can better separate the training 
data than the linear one.

Deep nets simplify the process of design- 
ing the features by operating directly on the 
raw data [20]. Repeated parametric non-
linear transformations attempt to extract 
successively more abstract representations 
that lead to the desired score F(x, y, w).  
In the deep net case, the parameter vector  
w denotes the concatenation of all transfor- 
mation parameters, which we aim to adjust 
during training of the model.

Mathematically, we can denote repeated 

parametric transformations via a composite 
function. In its most general form, composite  
functions are illustrated using a computa-
tion graph, as shown in Figure 2, composed 
out of base transformations, such as linear 
functions, convolutions, etc. The computa-
tion graph of a simple linear model is  
shown in Figure 2(a). The computation 
graph of a deep net which is composed out 
of n serialized components is illustrated in 
Figure 2(b). Note that deep nets automati-
cally transform the raw data into feature 
representations so there is no need to ex-

Decision 
Boundary

Regular Mail

Spam
F(x,0,w)>F(x,1,w)

F(x,1,w)>F(x,0,w)

F(x,1,w)=F(x,0,w)

Decision Boundary

Regular Mail

Spam

F(x,0,w)>F(x,1,w)

F(x,1,w)>F(x,0,w)

F(x,1,w)=F(x,0,w)

FIGURE 1.The decision boundary of (a) a linear model and (b) a non-linear model. The scoring function F (x, y, w) used in (a) is linear,  
i.e., F (x, y, w) = wT. ϕ(x, y). A more complex model is more flexible and hence can separate the data as shown in (b).

FIGURE 2. The computation graphs of three different models. (a) A single-layer model where the scoring function F (x, y, w)  is a linear function.  
(b) A deep model where the scoring function F (x, y, w)  is composed out of n serialized computations. (c) A general form of a deep model where  
F (x, y, w)  is a composite function. Commonly used operations for functions f are convolution and matrix multiplication followed by non-linear 
operations, such as a rectified linear unit, a hyperbolic tangent or a sigmoid function.

(a)

(a) (b) (c)

(b)
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plicitly find feature vectors ϕ(x, y). A more 
general form of deep net is illustrated in 
Figure 2(c). Roughly speaking, the depth of 
this computation graph corresponds to the 
complexity of the scoring function.

Nowadays, a variety of software 
tools [6, 15, 4, 26, 1, 27]1 in different 
programming languages are available to 
specify computation graphs and train their 
parameters on collected training data D. 

This training procedure iterates four 
steps: (i) scores are evaluated on a subset of 
data-points using the current parameters, 
which is known as the ‘forward pass’; (ii) 
the difference between the obtained scores 
and the expected ground-truth is computed; 
(iii) this difference is then used to scale 
the derivative of the scoring function w.r.t. 
its parameters, which is referred to as the 
‘backward pass’; (iv) the gradient obtained 
from the preceding step is used to update 
the models parameters w.

For many models, forward pass and 
backward pass are the most expensive 
operations. Depending on the computation 

graph, matrix multiplications and 
convolutions are frequent operations. 
To enable computational efficiency of 
those operations which are executed 
thousands of times during training, all of 
the aforementioned software tools take 
advantage of GPU accelerators. Even 
with GPU acceleration, training of deep 
nets may take up to a few days. Without 
those accelerators, training, and often also 
inference, is hardly feasible. To process 
a useful number of data points at a time, 
GPUs are required to have a reasonable 
amount of memory, too.

APPLICATIONS
Because of the general concept, deep 
learning has found widespread use in many 
different application domains. It is well 
beyond the scope of this article to review 
applications extensively. We will focus on 
a small subjective selection of computer 
vision and natural language processing 
applications in the following.

Making sense of image data is the 
main focus of computer vision [13, 25]. 
One of its efforts was organized in the 
ImageNet challenge [9], a competition 
requiring to predict the dominant object 
from 1000 possibilities, given a single input 

image. First organized in 2010, methods 
traditionally used linearly weighted hand-
crafted features up until 2012 when the 
University of Toronto team outperformed 
competitors by a significant margin using a 
deep net based technique [18]. This result 
marked a turning point in computer vision 
and beyond, making deep learning one of 
the core technologies in many applications.

Among those applications that received 
a significant amount of attention are image 
captioning [28, 16, 17, 11] and visual 
question answering [2, 21], two tasks that 
were very hard prior to the deep nets [3, 
12, 19]. We illustrate some results of our 
group in Figure 3(a). In recent work [14], 
our group reversed the task and investigated 
deep nets for generations of questions given 
an image. This is challenging since there is 
not a single question that fits the content of 
an image. Hence we require mechanisms 
that generate a diverse set of possible 
questions. See Figure 3(b) for an example.

Beyond images, deep nets are also applied 
on videos, e.g., for video object segmentation. 
Video object segmentation aims at separating 
the foreground objects from the background 
region in videos as illustrated in Figure 3(c). 
It attracts attention because of its various 
applications, such as video editing, automatic 

1 http://torch.ch, http://caffe.berkeleyvision.
org, http://mxnet.io, http://deeplearning.net/
software/theano/, http://tensorflow.org, http://
www.vlfeat.org/matconvnet/

FIGURE 3. Applications of deep learning. (a) Visual question answering. Given an input image and a question, the learned model can answer the  
question based on its attention which highly depends on the question. The red region is the region with higher attention. (b) Visual question generation. 
Given an input image, the model is able to generate a diverse set of questions. (c) Video object segmentation. The goal for video object segmentation  
is to separate the foreground objects (bottom) from the video sequences (top).

(a) (b) (c)
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background removal and replacement, and 
video compression, which are particularly 
appealing for mobile applications and mobile 
augmented reality. The DAVIS challenge for 
video object segmentation [22] is organized to 
encourage progress in this area. 

Other applications of deep nets include 
dermatologist-level cancer classification 
accuracy using a deep net [10]. Deep 
nets are also used to power autonomous 
navigation applications, and they are used 
in AlphaGo, a Go engine which achieved 
expert level game playing performance to 
win against Lee Sedol, a Go professional of 
highest rank [24].

FUTURE CHALLENGES
Deep learning is the beginning of a more 
data driven era, and applications like visual 
question answering, question generation 
and video segmentation will transform 

how we interact with mobile devices. Going 
forward, significant challenges remain to be 
addressed. For example, computationally more 
effective techniques, faster communication, 
and hardware is in need to support larger deep 
nets in edge devices such as phones. Improved 
training will lead to larger models but it will 
also lead to algorithms, which automatically 
search for appropriate composite functions, 
an approach that is not scalable at this point 
in time. Deep learning for joint prediction of 
multiple variables is a recent research topic as 
well [5, 23].

Applications will continue to address 
more and more complicated tasks. For 
example, while natural language processing 
is fairly common in virtual assistants, their 
reasoning abilities are still very limited. 
Finding mechanisms to combine extracted 
information and attach semantics is an open 
challenge. n
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