
GetMobile March 2017 14

t a very high level, all those
applications recognize patterns.
Predictions for today’s data are

based on patterns that have been deemed
useful in the past. For example, a specific
sequence of words in an email, i.e., a
pattern, may lead the algorithm to tag
the incoming email as spam. Concretely,
a spam filter parses an incoming email,
looking for a number of textual patterns.
Based on the result, a score is computed,
which determines the decision about
whether or not to flag this email as spam.

Classical machine learning techniques
require careful engineering of those
patterns, also referred to as features of
the data. Designing features is a time
consuming and labor intensive process,
which often requires a significant amount
of domain expertise. As a result, the
approach is hard to scale.

Deep learning, in contrast, subsumes
machine learning tools, which use the raw

data as input, and automatically infer the
patterns that are needed to achieve good
results for the considered task. To this end,
deep learning algorithms extract multiple
levels of abstractions from the raw data
by successively transforming the provided
input [20]. Consecutive layers transform
the data into an increasingly abstract
representation, which is semantically
meaningful. Importantly, while the type of
computations performed in each layer are
specified by humans to be operations, such
as matrix multiplications or convolutions,
their parameters and hence the extracted
features are not predetermined.

As a consequence, compared to
classical machine learning algorithms,
deep learning is more scalable when
considering human labor, and does not
require significant domain expertise for
the considered task beyond understanding
input and desired output. It has hence lead
to a flurry of applications that can now

Yuan-Ting Hu and Alexander G. Schwing
University of Illinois at Urbana-Champaign (UIUC)

Editors: Romit Roy Choudhury, Haitham Hassanieh

AN ELEVATOR
PITCH ON
DEEP LEARNING
Machine learning improves all aspects of our life and very few
days pass where we don’t interact with a machine learning driven
application. For example, we may use fitness trackers that monitor the
quality of our sleep. Before leaving to work, we may check the weather
forecast. To get to work, we use a navigation system that predicts
the fastest route to our first meeting. On the road, we use voice
commands to interact with our phone. Web searches and e-commerce
recommendations are based on machine learning. Cameras detect
faces when we take a picture and our email inboxes are protected by
spam filters, which are designed using machine learning tools.

[ARM'S LENGTH]

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

15March 2017 | Volume 21, Issue 1 GetMobile

[ARM'S LENGTH]

machines to learn the weights w. This process
is called training or supervised learning. To
train the parameters we construct a dataset
D, which contains pairs of input data x, i.e.,
emails, and its corresponding desired true
output yT , informing us about whether the
email should be considered spam. Formally,
the dataset contains pairs (x, yT) which
constitute the supervision that we provide
to the learning algorithm. Note that both
spam and regular emails are required in
our dataset D.

During training, we find the parameters
w by comparing our current prediction
y* with the provided desired output, i.e.,
the groundtruth. If the current prediction
agrees with the groundtruth for a pair
(x, yT), the parameters w of the scoring
function are not modified. If, in contrast,
the current prediction does not agree with
the groundtruth, we adjust the parameters
in a direction that could correct this error.
Note that this adjustment can be computed
easily for many useful types of scoring
functions F(x, y, w).

In practice, instead of using a single
datapoint (x, yT), we often use a set of
examples at a time, average their output
error, and adjust the parameters according
to the average. We repeat this process for
many small subsets of examples extracted
from the entire training set D, until the
error does not change significantly. This
technique is referred to as stochastic
gradient descent with mini-batches and
performs surprisingly well in general.

Upon having completed training, it is
useful to test the model parameters w by
assessing their performance on examples
that we haven’t used for training, i.e., the
test set. This quality control ensures that
our approach generalizes to data that the
algorithm has never observed before.
Multiple cases should be differentiated.
First, the model may perform well on the
training set and slightly worse on the test
set, which is the desired behavior. Second,

be addressed by machine learning wizards
joining forces with domain experts.

However, deep learning methods are
known to be very data hungry, often
requiring thousands of data points. In
addition, they are also known to being
computationally very expensive, requiring
computational resources that can only be
provided by recent accelerators, such as
graphics processing units (GPUs).

In the following, we first provide a high-
level introduction to machine learning in
general and deep learning specifically. We
then discuss a series of applications that
have been addressed using the presented
techniques, before we conclude with remarks
on future directions for deep learning.

DEEP LEARNING PRIMER
To describe the machine learning concept,
we consider the spam filtering task as an
example. Slightly more formally, we use x
to refer to a data point, i.e., an email in our
case. Note that x may encompass all kinds
of data that we possess beyond the text
itself, e.g., header information etc. Given
data about an email, x, we want to predict
whether it is spam or not. We use a variable
y to indicate this choice. Since y is the output
of the system, it is often referred to as an
output space variable. For our example, y = 1
indicates the email is spam, and y = 0 refers
to a regular email.

For every incoming email, our system
may produce two real-valued numbers, i.e.,
two scores, assessing the degree to which the
system thinks an email is spam or regular.
In general, we refer to the score using F(x, y, w),
which provides the assessment for regular
mail, F(x, 0, w) ∈ R, and the assessment
for spam mail, F(x, 1, w) ∈ R. Based on the
magnitude of the score we flag an email x
to be spam if F(x, 1, w) > F(x, 0, w). Beyond
the data, the score also depends on some
parameters w, often called weights.

Machine learning refers to techniques
for adjusting the parameters w, i.e., for using

the model may perform well on the training
set and poorly on the test set. Third, the
model may perform poorly on both the
training and test set. In the second case
the model does not generalize, which may
be caused by overfitting to the specifics of
the training data. Possible solutions are to
increase the training data or to simplify
the model complexity. The third case could
be addressed by increasing the model
complexity.

Some of the least complex models are
linear models, such as logistic regression
[8, 29] or support vector machines [7].
Hereby, the score function F(x, y, w)
depends linearly on the parameters w and
a vector of features ϕ(x, y), i.e., F(x, y, w) =
wT ϕ(x, y). This vector of features used to
be hand-crafted, e.g., in case of email spam
filters, each entry in the vector ϕ(x, y) refers
to a specific textual pattern. For example,
a feature indicates the number of times the
word “drug” occurs minus 0.5 if y = 1, or
0.5 minus the number of times the word
“drug” occurs if y = 0. Each of those natural
language patterns is then combined linearly
to compute a score. In the following, let
n denote the number of times the word
“drug” occurs in an email. Intuitively, if the
discussed feature is the only feature, and
its corresponding weight w is positive, the
algorithm predicts an email to be spam if
the word “drug” occurs at least once, since
F(x, 1, w) = n − 0.5 > F(x, 0, w) = 0.5 − n if
the number of times the word drug occurs
is larger than 0.5, i.e., if n > 0.5.

Interpretability as an advantage of a linear
scoring function is immediately obvious
from this example. Moreover, assuming all
features to be roughly normalized, the scale
of the weight determines the importance of
the feature. However, a linear score function
is also very simple. Intuitively, the decision
boundary between the two classes ‘spam’
(y = 1) and ‘not spam’ (y = 0) is linear as
shown in Figure 1(a). It is hence the job
of the domain expert to find features that

GetMobile March 2017 | Volume 21, Issue 116

[ARM'S LENGTH]

ensure almost linearly separable data points
and hence good classification performance.
A significant amount of domain expertise is
required to design suitable features such that
a linear decision boundary achieves a good
performance on a given dataset D.

However, it is difficult to design features
such that the data is linearly separable.
One possible solution is to increase the
complexity of the model, e.g., by using a
non-linear score function. Given the same
training data points, the decision boundary
of a non-linear scoring function as shown in

Figure 1(b) can better separate the training
data than the linear one.

Deep nets simplify the process of design-
ing the features by operating directly on the
raw data [20]. Repeated parametric non-
linear transformations attempt to extract
successively more abstract representations
that lead to the desired score F(x, y, w).
In the deep net case, the parameter vector
w denotes the concatenation of all transfor-
mation parameters, which we aim to adjust
during training of the model.

Mathematically, we can denote repeated

parametric transformations via a composite
function. In its most general form, composite
functions are illustrated using a computa-
tion graph, as shown in Figure 2, composed
out of base transformations, such as linear
functions, convolutions, etc. The computa-
tion graph of a simple linear model is
shown in Figure 2(a). The computation
graph of a deep net which is composed out
of n serialized components is illustrated in
Figure 2(b). Note that deep nets automati-
cally transform the raw data into feature
representations so there is no need to ex-

Decision
Boundary

Regular Mail

Spam
F(x,0,w)>F(x,1,w)

F(x,1,w)>F(x,0,w)

F(x,1,w)=F(x,0,w)

Decision Boundary

Regular Mail

Spam

F(x,0,w)>F(x,1,w)

F(x,1,w)>F(x,0,w)

F(x,1,w)=F(x,0,w)

FIGURE 1.The decision boundary of (a) a linear model and (b) a non-linear model. The scoring function F (x, y, w) used in (a) is linear,
i.e., F (x, y, w) = wT. ϕ(x, y). A more complex model is more flexible and hence can separate the data as shown in (b).

FIGURE 2. The computation graphs of three different models. (a) A single-layer model where the scoring function F (x, y, w) is a linear function.
(b) A deep model where the scoring function F (x, y, w) is composed out of n serialized computations. (c) A general form of a deep model where
F (x, y, w) is a composite function. Commonly used operations for functions f are convolution and matrix multiplication followed by non-linear
operations, such as a rectified linear unit, a hyperbolic tangent or a sigmoid function.

(a)

(a) (b) (c)

(b)

17March 2017 | Volume 21, Issue 1 GetMobile

[ARM'S LENGTH]

plicitly find feature vectors ϕ(x, y). A more
general form of deep net is illustrated in
Figure 2(c). Roughly speaking, the depth of
this computation graph corresponds to the
complexity of the scoring function.

Nowadays, a variety of software
tools [6, 15, 4, 26, 1, 27]1 in different
programming languages are available to
specify computation graphs and train their
parameters on collected training data D.

This training procedure iterates four
steps: (i) scores are evaluated on a subset of
data-points using the current parameters,
which is known as the ‘forward pass’; (ii)
the difference between the obtained scores
and the expected ground-truth is computed;
(iii) this difference is then used to scale
the derivative of the scoring function w.r.t.
its parameters, which is referred to as the
‘backward pass’; (iv) the gradient obtained
from the preceding step is used to update
the models parameters w.

For many models, forward pass and
backward pass are the most expensive
operations. Depending on the computation

graph, matrix multiplications and
convolutions are frequent operations.
To enable computational efficiency of
those operations which are executed
thousands of times during training, all of
the aforementioned software tools take
advantage of GPU accelerators. Even
with GPU acceleration, training of deep
nets may take up to a few days. Without
those accelerators, training, and often also
inference, is hardly feasible. To process
a useful number of data points at a time,
GPUs are required to have a reasonable
amount of memory, too.

APPLICATIONS
Because of the general concept, deep
learning has found widespread use in many
different application domains. It is well
beyond the scope of this article to review
applications extensively. We will focus on
a small subjective selection of computer
vision and natural language processing
applications in the following.

Making sense of image data is the
main focus of computer vision [13, 25].
One of its efforts was organized in the
ImageNet challenge [9], a competition
requiring to predict the dominant object
from 1000 possibilities, given a single input

image. First organized in 2010, methods
traditionally used linearly weighted hand-
crafted features up until 2012 when the
University of Toronto team outperformed
competitors by a significant margin using a
deep net based technique [18]. This result
marked a turning point in computer vision
and beyond, making deep learning one of
the core technologies in many applications.

Among those applications that received
a significant amount of attention are image
captioning [28, 16, 17, 11] and visual
question answering [2, 21], two tasks that
were very hard prior to the deep nets [3,
12, 19]. We illustrate some results of our
group in Figure 3(a). In recent work [14],
our group reversed the task and investigated
deep nets for generations of questions given
an image. This is challenging since there is
not a single question that fits the content of
an image. Hence we require mechanisms
that generate a diverse set of possible
questions. See Figure 3(b) for an example.

Beyond images, deep nets are also applied
on videos, e.g., for video object segmentation.
Video object segmentation aims at separating
the foreground objects from the background
region in videos as illustrated in Figure 3(c).
It attracts attention because of its various
applications, such as video editing, automatic

1 http://torch.ch, http://caffe.berkeleyvision.
org, http://mxnet.io, http://deeplearning.net/
software/theano/, http://tensorflow.org, http://
www.vlfeat.org/matconvnet/

FIGURE 3. Applications of deep learning. (a) Visual question answering. Given an input image and a question, the learned model can answer the
question based on its attention which highly depends on the question. The red region is the region with higher attention. (b) Visual question generation.
Given an input image, the model is able to generate a diverse set of questions. (c) Video object segmentation. The goal for video object segmentation
is to separate the foreground objects (bottom) from the video sequences (top).

(a) (b) (c)

GetMobile March 2017 | Volume 21, Issue 118

[ARM'S LENGTH]

background removal and replacement, and
video compression, which are particularly
appealing for mobile applications and mobile
augmented reality. The DAVIS challenge for
video object segmentation [22] is organized to
encourage progress in this area.

Other applications of deep nets include
dermatologist-level cancer classification
accuracy using a deep net [10]. Deep
nets are also used to power autonomous
navigation applications, and they are used
in AlphaGo, a Go engine which achieved
expert level game playing performance to
win against Lee Sedol, a Go professional of
highest rank [24].

FUTURE CHALLENGES
Deep learning is the beginning of a more
data driven era, and applications like visual
question answering, question generation
and video segmentation will transform

how we interact with mobile devices. Going
forward, significant challenges remain to be
addressed. For example, computationally more
effective techniques, faster communication,
and hardware is in need to support larger deep
nets in edge devices such as phones. Improved
training will lead to larger models but it will
also lead to algorithms, which automatically
search for appropriate composite functions,
an approach that is not scalable at this point
in time. Deep learning for joint prediction of
multiple variables is a recent research topic as
well [5, 23].

Applications will continue to address
more and more complicated tasks. For
example, while natural language processing
is fairly common in virtual assistants, their
reasoning abilities are still very limited.
Finding mechanisms to combine extracted
information and attach semantics is an open
challenge. n

Yuan-Ting Hu is a PhD student in the ECE
department of the University of Illinois at
Urbana-Champaign (UIUC). She received
her master’s degree and bachelor’s degree
from National Taiwan University. Her research
interests include computer vision and
machine learning.

Alexander G. Schwing is an assistant
professor in the ECE department of the
University of Illinois at Urbana-Champaign
(UIUC). Before joining UIUC, he was a
postdoctoral fellow at the University of
Toronto after receiving a PhD from ETH Zurich.
His research interests are in the general areas
of machine learning and computer vision.

REFERENCES
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E.,

Chen, Z., Citro, C., Corrado, G. S., Davis, A.,
Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.,
Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz,
R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C.,
Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,
M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from
tensorflow.org.

[2] Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra,
D., Zitnick, C. L., and Parikh, D. (2015). VQA:
Visual question answering. In Proc. ICCV.

[3] Barnard, K., Duygulu, P., Forsyth, D., Freitas, N.
D., Blei, D. M., and Jordan, M. I. (2003). Matching
words and pictures. JMLR.

[4] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang,
M., Xiao, T., Xu, B., Zhang, C., and Zhang, Z.
(2015). MXNet: A Flexible and Efficient Machine
Learning Library for Heterogeneous Distributed
Systems. In https://arxiv.org/abs/1512.01274.

[5] Chen*, L.-C., Schwing*, A. G., Yuille, A. L., and
Urtasun, R. (2015). Learning Deep Structured
Models. In Proc. ICML. *equal contribution.

[6] Collobert, R., Bengio, S., and Marithoz, J. (2002).
Torch: A Modular Machine Learning Software
Library.

[7] Cortes, C. and Vapnik, V. N. (1995). Support-
Vector Networks. Machine Learning.

[8] Cox, D. R. (1958). The regression analysis
of binary sequences (with discussion). Royal
Statistical Society.

[9] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,
and Fei-Fei, L. (2009). ImageNet: A Large-Scale
Hierarchical Image Database. In Proc. CVPR.

[10] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J.,
Swetter, S. M., Blau, H. M., and Thrun, S. (2017).
Dermatologist-level classification of skin cancer
with deep neural networks. Nature.

[11] Fang, H., Gupta, S., Iandola, F., Srivastava, R.,
Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M.,
Platt, J. C., Zitnick, C. L., and Zweig, G. (2015).
From captions to visual concepts and back. In
Proc. CVPR.

[12] Farhadi, A., Hejrati, M., Sadeghi, M. A., Young,
P., Rashtchian, C., Hockenmaier, J., and Forsyth,
D. (2010). Every picture tells a story: Generating
sentences from images. In Proc. ECCV.

[13] Forsyth, D. A. and Ponce, J. (2011). Computer
Vision: A Modern Approach (2nd Edition).
Pearson.

[14] Jain*, U., Zhang*, Z., and Schwing, A. G. (2017).
Creativity: Generating Diverse Questions using
Variational Autoencoders. In Proc. CVPR. *equal
contribution.

[15] Jia, Y., Shelhamer, E., Donahue, J., Karayev,
S., Long, J., Girshick, R., Guadarrama, S.,
and Darrell, T. (2014). Cae: Convolutional
Architecture for Fast Feature Embedding.
arXiv preprint arXiv:1408.5093.

[16] Karpathy, A. and Fei-Fei, L. (2015). Deep
visual-semantic alignments for generating image
descriptions. In Proc. CVPR.

[17] Kiros, R., Salakhutdinov, R., and Zemel, R. S.
(2015). Unifying visual-semantic embeddings with
multimodal neural language models. In TACL.

[18] Krizhevsky, A., Sutskever, I., , and Hinton,
G. E. (2012). Imagenet classication with deep
convolutional neural networks. In Proc. NIPS.

[19] Kulkarni, G., Premraj, V., Dhar, S., S. Li, Y. C.,
Berg, A. C., and Berg, T. L. (2011). Baby talk:
Understanding and generating simple image
descriptions. In CVPR.

[20] LeCun, Y., Bengio, Y., and Hinton, G. E. (2015).
Deep learning. Nature.

[21] Malinowski, M., Rohrbach, M., and Fritz,
M. (2015). Ask your neurons: A neural-based
approach to answering questions about images.
In Proc. ICCV.

[22] Perazzi, F., Pont-Tuset, J., McWilliams, B.,
Gool, L. V., Gross, M., and Sorkine-Hornung,
A. (2016). A benchmark dataset and evaluation
methodology for video object segmentation.
In Proc. CVPR.

[23] Schwing, A. G. and Urtasun, R. (2015).
Fully Connected Deep Structured Networks.
In https://arxiv.org/abs/1503.02351.

[24] Silver, D., Huang, A., Maddison, C. J., Guez, A.,
Sifre, L., van den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M.,
Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., and Hassabis, D.
(2016). Mastering the game of Go with deep
neural networks and tree search. Nature.

[25] Szelisiki, R. (2011). Computer Vision:
Algorithms and Applications. Springer.

[26] Theano Development Team (2016). Theano:
A Python framework for fast computation
of mathematical expressions. arXiv e-prints,
abs/1605.02688.

[27] Vedaldi, A. and Lenc, K. (2014). MatConvNet -
Convolutional Neural Networks for MATLAB.
In https://arxiv.org/abs/1412.4564.

[28] Vinyals, O., Toshev, A., Bengio, S., and Erhan,
D. (2015). Show and tell: A neural image caption
generator. In Proc. CVPR.

[29] Walker, S. H. and Duncan, D. B. (1967).
Estimation of the probability of an et as a
function of several independent variables.
Biometrika.

