

mmFER: Millimetre-wave Radar based Facial Expression Recognition for Multimedia IoT Applications

Xi Zhang^{†,1,2}, Yu Zhang ^{†,1}, Zhenguo Shi¹, <u>Tao Gu¹</u>

¹ Macquarie University, Sydney, Australia
 ² RMIT University, Melbourne, Australia
 [†] The first two authors contributed equally to this work

Facial Expression Recognition (FER)

- Emotional awareness by FER for interaction (CHI), communication (feedback), and well-being (healthcare)
- Deliver a valuable assessment of audience's preference, interest level, engagement and reactions, etc.
- Enabling a fundamental capability that IoT system can "better understand" users, actively create more personalized and responsive user experiences



State-of-the-Arts

Vision-based approach:

- Privacy concerns
- Ambient light conditions (e.g., in the dark)
- Blocking (e.g., wearing masks)

Wearable based approach (PPG, EEG, earphones):

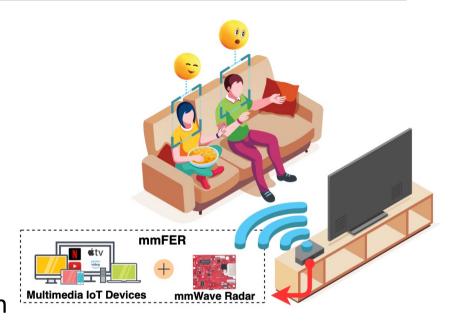
- Discomfort to users for long-time wearing
- One device for each user

Wireless sensing approach (Ultrasound, Wi-Fi):

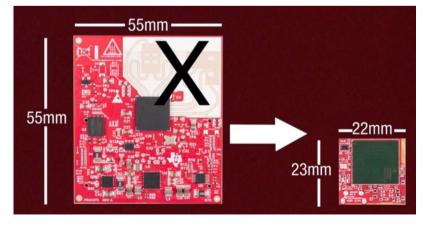
- Fail by impact of body motions
- Short detection range (e.g., <= 60cm)
- Poor support for multiple users

Our Solution: mmWave Radar Sensing

- **High robustness:** robust to work in different environment conditions, e.g., dark
- Large bandwidth: high resolution for detecting objects and tiny motions
- Long-range detection
- Fine spatial resolution: fine spatial resolution enabled based on the MIMO
- Wide Field of View (FOV): cover a large area with a single sensor
- Penetration: can easily penetrate materials such as glasses, masks
- Privacy-preserving manner



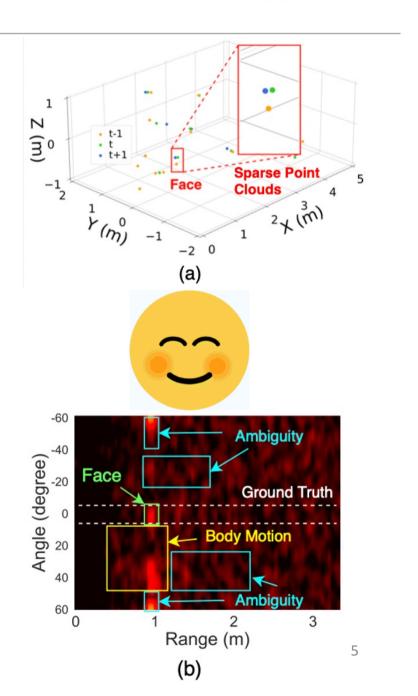
Easy for IoT device integration



Challenges

 Default point cloud approach fails to detect user's face due to highly sparse point clouds generated

- Subtle facial movements: facial muscle movements by expressions are in in millimetre levels
- Massive ambient noise contains in raw mmWave signals, e.g., body motion, walking people, appliance, and ambient noise reflected by walls
- Limited mmWave dataset: facial data collection is costly due to labelling efforts and privacy concerns



MACQUARIE University SYDNEY-AUSTRALIA

Key Ideas

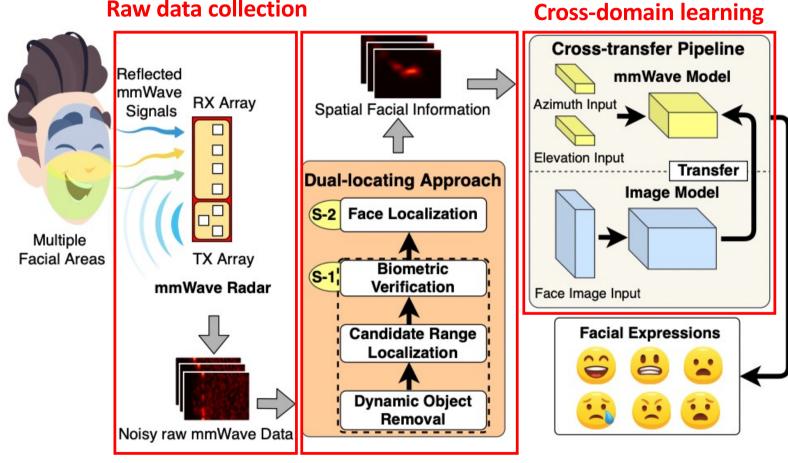
- What if we could "partially locate" user's face for capturing subtle facial movements from noisy raw mmWave signals?
 - Step-1: using unique biometric features to locate users and eliminate ambient noise
 - Step-2: using spatial facial features to locate faces and remove irrelevant body motions
- What if we could use a public image FER dataset (i.e., large-scale) and its pre-trained models to "transfer" knowledge from image domain to mmWave domain to effectively enable the learning with much less data collection?
 - Using cross-domain transfer learning to enable optimal model performance with small-scale mmWave dataset

Our Contributions

- A first-of-its-kind mmWave radar based FER system that detects subtle facial muscle movements associated with raw mmWave signals for multimedia IoT applications
- A novel dual-locating approach to accurately locate on subjects' faces in space based on MIMO technology
- A novel cross-domain transfer pipeline to enable an effective and safe model knowledge transformation for mmWave-based FER model learning
- An off-the-shelf mmWave radar based implementation with extensive experiments
- This pioneering system mitigates concerns over privacy concerns and lighting constraints, and has strong adaptability to fit a number of realworld scenarios with high accuracy

System Working Flow

Raw data collection

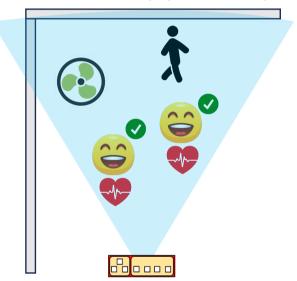


Face localization

Main Technique 1: Dual-locating Approach

Step-1: eliminating ambient noise

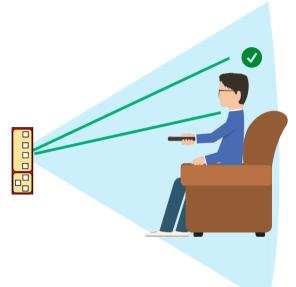
Noise removal pipeline (3-process)

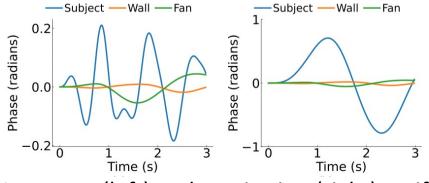


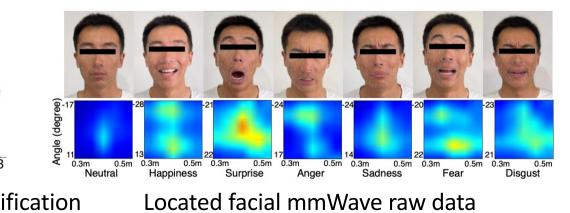
Face-matching mechanism

Step-2: removing body motions

using Gaussian Mixture Model (GMM)



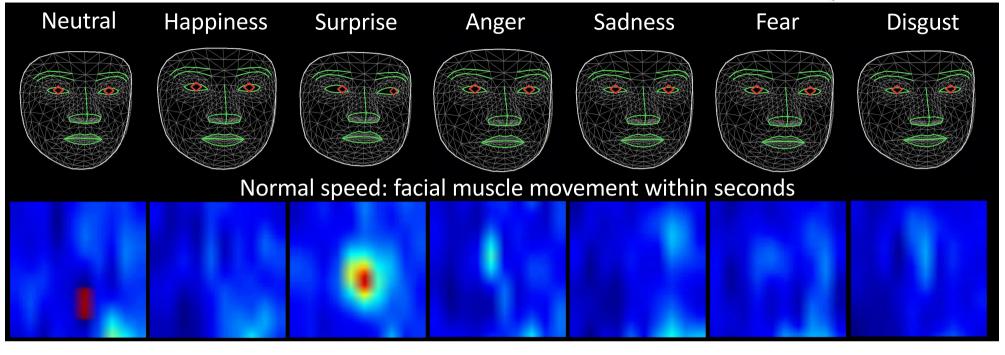


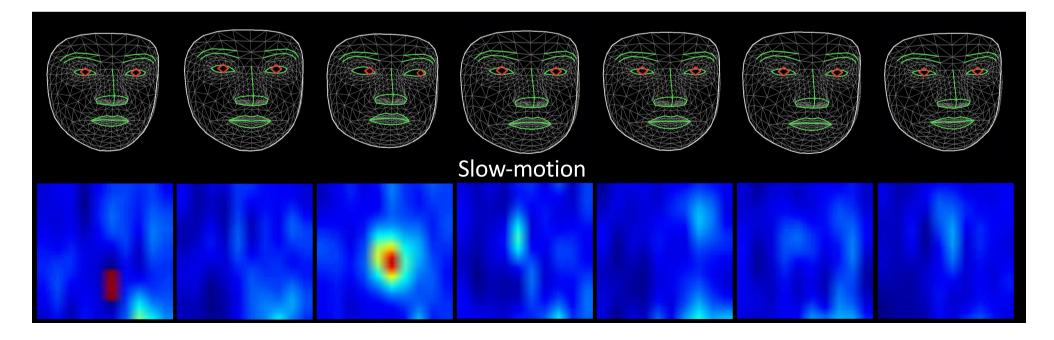


Heart rate (left) and respiration (right) verification

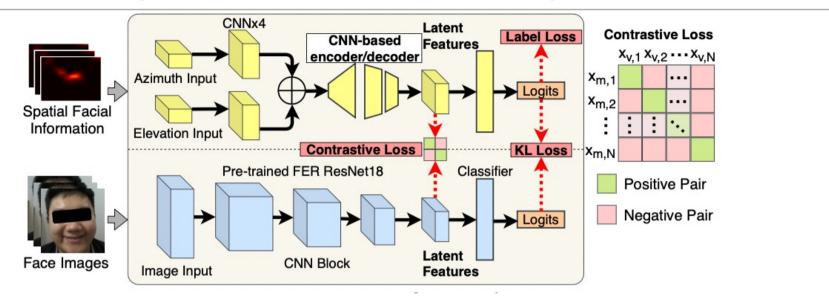
Located facial mmWave raw data

mmFER Demo





Main Technique 2: Cross-transfer Pipeline



- Inspired by the principle of cross-domain transfer learning, uniquely using a pre-trained FER image model to "teach" training our mmWave model
- Proposing an autoencoder based feature alignment mechanism to reduce the impact of data heterogeneity of image to mmWave data
- Proposing a hybrid learning loss function:
 - A supervised loss;
 - A Kullback–Leibler (KL) divergence loss;
 - A contrastive loss based on positive-negative correlation, largely improve model performance

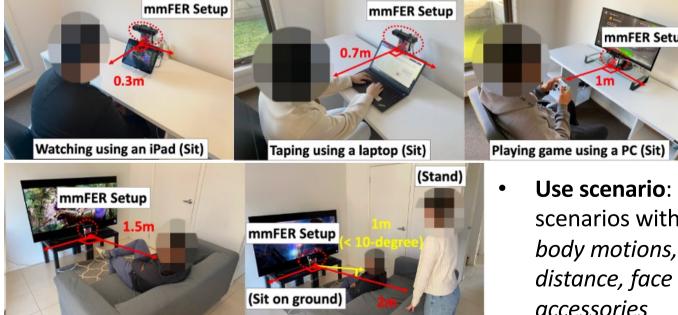
Zed 2 Camera

System Implementation and Setup

- **Setup**: TI IWR1843BOOST sensor board operating at 77-81GHz (\$299) and a TI DCA1000EVM data capture board (\$599)
- **Upright RX antenna array** in elevation for face localization
- **Data collection**: recruiting 10 subjects

mmFER Setup

Upright RX antenna array



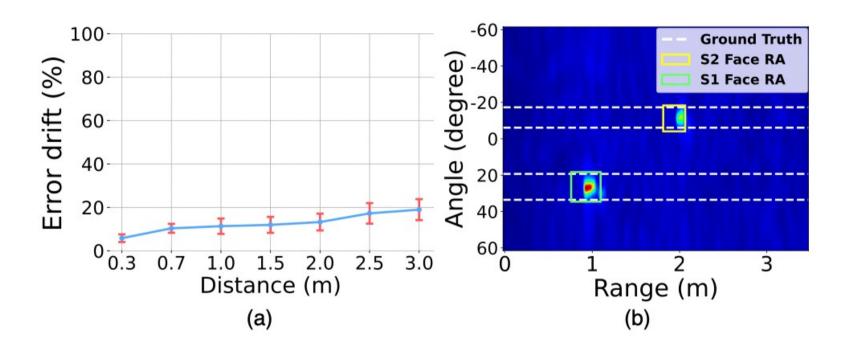
Watching TV (Multi-target)

Watching TV (Sit)

Use scenario: tested in different scenarios with different noise setup, e.g., body motions, postures, subject-to-radar distance, face orientation, wearable accessories

12

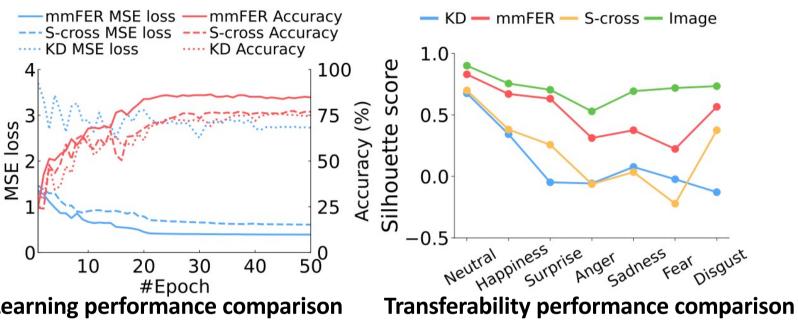
Evaluation: Dual-locating Performance



- Fig. (a) shows that our approach can effectively enable face localization at different subject-to-radar distances with **minor error drift**
- Fig. (b) shows that our approach can locate face accurately for multiple targets by removing ambient noise

14

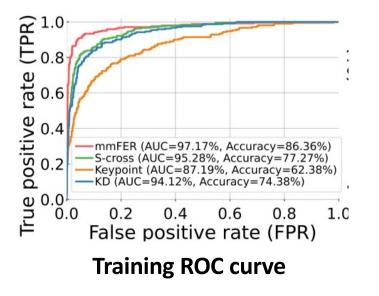
Evaluation: Cross-transfer Performance



Learning performance comparison

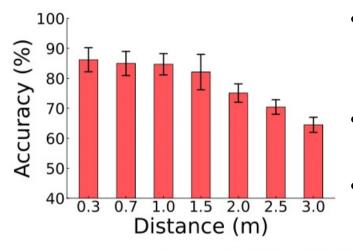
Comparing to **3 baselines**:

- Knowledge distillation (KD)
- Facial landmark based image-to-sensing transformation (Keypoint)
- Unsupervised cross learning approach (S-cross)

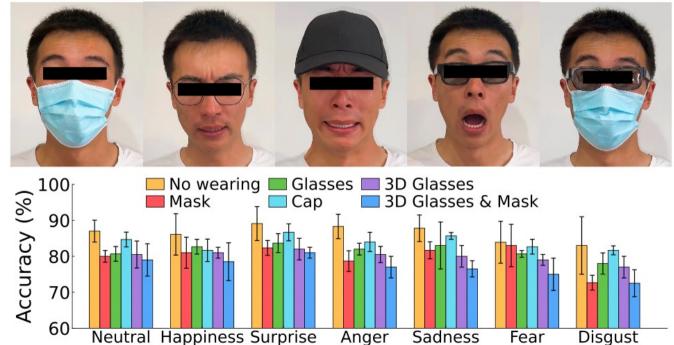


Our approach outperforms baselines, achieving highest accuracy

Evaluation: Overall Performance



- **84.48% accuracy** in a subject-to-radar distance between **0.3 and 1.5m**
- 80.57% accuracy when distance increases to 2.5m
- No major accuracy drop in a scenario with wearing accessories



Thank you! Questions

