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Facial Expression Recognition (FER)

Emotional awareness by FER for interaction (CHI), communication (feedback),
and well-being (healthcare)

Deliver a valuable assessment of audience’s preference, interest level,
engagement and reactions, etc.

Enabling a fundamental capability that 1oT system can “better understand” users,
actively create more personalized and responsive user experiences
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State-of-the-Arts

Vision-based approach:
* Privacy concerns

 Ambient light conditions (e.g., in the dark)
* Blocking (e.g., wearing masks)

Wearable based approach (PPG, EEG, earphones):

* Discomfort to users for long-time wearing
* One device for each user
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( Wireless sensing approach (Ultrasound, Wi-Fi):
(o))

* Fail by impact of body motions
e Short detection range (e.g., <= 60cm)
e Poor support for multiple users s
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Our Solution: mmWave Radar Sensing

High robustness: robust to work in different
environment conditions, e.g., dark

Large bandwidth: high resolution for
detecting objects and tiny motions

Long-range detection

Fine spatial resolution: fine spatial resolution
enabled based on the MIMO

Wide Field of View (FOV): cover a large area
with a single sensor

Penetration: can easily penetrate materials
such as glasses, masks

Privacy-preserving manner 4



Challenges
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Default point cloud approach fails to N =
detect user’s face due to highly sparse 3% ‘w B
. . -~°7  Sparse Point 5

point clouds generated =L Face  Clouds s
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Subtle facial movements: facial muscle

movements by expressions are in in S
millimetre levels ~’
Massive ambient noise contains in raw ' Ambiguity
mmWave signals, e.g., body motion, _ E/

Ground Truth

walking people, appliance, and ambient
noise reflected by walls

Limited mmWave dataset: facial data
collection is costly due to labelling efforts
and privacy concerns
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Key Ideas

» What if we could “partially locate” user’s face for capturing subtle facial
movements from noisy raw mmWave signals?

 Step-1: using unique biometric features to locate users and
eliminate ambient noise

e Step-2: using spatial facial features to locate faces and remove
irrelevant body motions

» What if we could use a public image FER dataset (i.e., large-scale) and its
pre-trained models to “transfer” knowledge from image domain to
mmWave domain to effectively enable the learning with much less data
collection?

* Using cross-domain transfer learning to enable optimal model
performance with small-scale mmWave dataset
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Our Contributions

* A first-of-its-kind mmWave radar based FER system that detects subtle
facial muscle movements associated with raw mmWave signals for
multimedia loT applications

* A novel dual-locating approach to accurately locate on subjects’ faces in
space based on MIMO technology

* A novel cross-domain transfer pipeline to enable an effective and safe
model knowledge transformation for mmWave-based FER model learning

* An off-the-shelf mmWave radar based implementation with extensive
experiments

* This pioneering system mitigates concerns over privacy concerns and
lighting constraints, and has strong adaptability to fit a number of real-
world scenarios with high accuracy
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System Working Flow
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Main Technique 1: Dual-locating Approach

Step-1: eliminating ambient noise Step-2: removing body motions
Face-matching mechanism
Noise removal pipeline (3-process) using Gaussian Mixture Model (GMM)
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Main Technique 2: Cross-transfer Pipeline
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* Inspired by the principle of cross-domain transfer learning, uniquely using
a pre-trained FER image model to “teach” training our mmWave model

* Proposing an autoencoder based feature alignment mechanism to
reduce the impact of data heterogeneity of image to mmWave data

* Proposing a hybrid learning loss function:
1) A supervised loss;
2) A Kullback—Leibler (KL) divergence loss;
3) A contrastive loss based on positive-negative correlation, largely
improve model performance
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System Implementation and Setup

e Setup: TI IWR1843BOOST sensor board |Upright RX antenna array Zed 2 Camera
operating at 77-81GHz ($299) and a Tl zo (o)
DCA1000EVM data capture board ) S
($599) L@ T| DCA1000EVM

* Upright RX antenna array in elevation ‘ e
for face localization < LR - j

Data collection: recruiting 10 subjects

'mmFER Setup
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I , %
. |Playing game using a PC (Sit) ‘

Taping using a laptop (Sit) [
~(stand),

* Use scenario: tested in different
scenarios with different noise setup, e.g.,
body motions, postures, subject-to-radar
distance, face orientation, wearable
accessories

(Sit onground) ’
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Evaluation: Dual-locating Performance

Ground Truth
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* Fig. (a) shows that our approach can effectively enable face localization at
different subject-to-radar distances with minor error drift

* Fig. (b) shows that our approach can locate face accurately for multiple
targets by removing ambient noise

13
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Evaluation: Cross-transfer Performance
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Learning performance comparison  Transferability performance comparison

 Comparing to 3 baselines:

e 1:0 s
= ,  Knowledge distillation (KD)
9 ! * Facial landmark based image-to-sensing
© . .
il transformation (Keypoint)
Z [ —mmFeR (AuC=97.17%, Accuracy=86.36%) * Unsupervised cross learning approach
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Our approach outperforms baselines,

Training ROC curve achieving highest accuracy 14



Evaluation: Overall Performance

Accuracy (%)
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* 84.48% accuracy in a subject-to-radar distance
between 0.3 and 1.5m

 80.57% accuracy when distance increases to 2.5m

 No major accuracy drop in a scenario with
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