ReMark: Privacy-Preserving Fiducial Marker System via Single-Pixel Imaging

Tzu-Hsu Yu and Hsin-Mu (Michael) Tsai

Dept. of Computer Science and Information Engineering
National Taiwan University
ACM MobiCom 2023
October 5, 2023

Fiducial Marker in the Industrial Environments

Indoor Localization and Navigation

https://doi.org/10.3390/s19071561

Augmented Reality

Img: https://insidernavigation.com

Markers in the environment or on the objects

Img: https://insidernavigation.com

Camera sub-system

Data bus

(C) Network

Robotic Arm

- 2. Estimate marker <u>pose</u>
- 3. <u>Decode</u> marker ID

Control commands

Camera sub-system

Data bus

(A) Edge device

(B) Cloud server

Factory scene

Arm

Images can contain private info:

- 1. Personnel
- 2. Environment
- 3. Manufacturing materials and items

Attack!

Camera sub-system

Data bus

(C) Network

(B) Cloud server

Factory scene

Arm

Marker

Background + other objects

Camera sub-system

Data bus

(A) Edge device

(C) Network

(B) Cloud server

Factory scene

Arm

Captured image

Marker

round + objects

Camera sub-system

Data bus

(B) Cloud server

Factory scene

Filter out private info here?

Idea: Eliminate unnecessary information before it enters the digital realm!

Key ideas: Single-Pixel Imaging + Retroreflector

Key ideas: Single-Pixel Imaging + Retroreflector

Frequency filtering

Naïve Method: Sequential Observations

- 1. One observation captures the sum of multiple pixels.
- 2. Good observation masks enables accurate estimation of the scene with **less no. of masks**
- 3. Enumerated, random, or train a neural network!

N=No. of SLM pixels M=No. of masks Compression Ratio= M/N

Ordinary light source and ambient light has most energy at DC & low frequency

Key ideas: Single-Pixel Imaging + Retroreflector

Intensity filtering

1. Retroreflection >> diffuse reflection

System Design

- Overview
 - Key ideas
 - Marker design
 - Two-stage operation
- Challenge 1: Singularity-free embedding for alignment NN
- Challenge 2: Reliable decoding in challenging bias

Marker design

ArUco ReMark • Black = black paper White = retroreflector 4x4 inner cells with black & white pattern for marker ID 4.8 cm 4.8 cm Black border White border for separation for pose estimation

System Design

- Overview
 - Key ideas
 - Marker design
 - Two-stage operation
- Challenge 1: Singularity-free embedding for alignment NN
- Challenge 2: Reliable decoding in challenging bias

Alignment Neural Network

- In identification stage
- Estimate the marker pose
- Accurate estimation is crucial to correctly capture the inner cells

Embedding representing marker pose

$$\begin{bmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \end{bmatrix}$$

Original

Rotate \vec{B} by 180°

Rotate both

→ violating one-to-one correspondence

Restrictions:

$$(1) \angle \vec{A}, \angle \vec{B} \in [-90^{\circ}, 90^{\circ})$$

$$(2) \angle \vec{A} - \angle \vec{B} \in [0^{\circ}, 180^{\circ})$$

$$(2) \angle \vec{A} - \angle \vec{B} \in [0^{\circ}, 180^{\circ})$$

$$\vec{A} \rightarrow \overrightarrow{Double}_{\text{azimuth}} \rightarrow \vec{A}_D \qquad \vec{A} = (a \cos \theta, a \sin \theta)$$

$$\vec{A} \rightarrow \overrightarrow{A}_D = (a \cos 2\theta, a \sin 2\theta)$$

$$\vec{B}$$

$$\vec{B}$$

 \vec{C}

$$\overrightarrow{B} \rightarrow \boxed{\begin{array}{c} \text{Double} \\ \text{azimuth} \end{array}} \rightarrow \overrightarrow{B}_D$$

$$\overrightarrow{A} = (a \cos \theta, a \sin \theta)$$
 $\overrightarrow{A_D} = (a \cos 2\theta, a \sin 2\theta)$

Rotate \vec{A} by 180° produce the same $\overrightarrow{A_D}$!

Rotate \vec{B} by 180° produce the same $\overrightarrow{B_D}$!

 \vec{C}

Exchange \vec{A} and \vec{B} produces the same \vec{M}

 \vec{C}

Exchange \vec{A} and \vec{B} produces $-\vec{D}$ (rotate by 180°)

Exchange \vec{A} and \vec{B} produces the same \vec{M}

 \vec{C}

Exchange \vec{A} and \vec{B} produces the same \vec{N}

Alignment NN embedding

$$\begin{bmatrix} M_1 & N_1 & C_1 \\ M_2 & N_2 & C_2 \end{bmatrix}$$

Singularity-free!

System Design

- Overview
 - Key ideas
 - Marker design
 - Two-stage operation
- Challenge 1: Singularity-free embedding for alignment NN
- Challenge 2: Reliable decoding in strong bias

Soft-Decision Decoding

Please take a look at our paper!

White border

Crop Fit to linear functi

Crop

& sum

distance

Bias function

Daug

Output the marker ID from the dictionary with the smallest L1 distance.

Multiply

Estimated

bias B

Evaluation

A Quick Summary of Results

• Detection stage:

Save **29**% of acquisition time

Save 73% of reconstruction time

Support **200 cm/s** mobility

28.9 fps detection frame rate

99.3% detection rate (1 marker)

• Identification stage:

2.1% decode error rate

Soft-decision reduces error by **60**%

Robust against interference:

Without

Saturation 275 lx, DC

4.7 marker/s identification rate

up to **30°** tilt angle

3-5 m working distance

Flicker

Frequency and Intensity Filtering

Intensity filtering only (Camera + retrorefl.)

Intensity + freq. filtering (ReMark)

Ambient DC illumination: 22 lx

 $SPI (f_c = o Hz)$

 $SPI (f_c = 25 \text{ kHz})$

1. Retroreflector returns more light than background objects due to intensity filtering

2. No longer work

illumination

with more

ambient

Ambient DC illumination: 2230 lx

3. No effect for ReMark operating at 25 kHz!

Singularity-Free Embedding for Alignment NN

Privacy Preservation

SPI Camera Raw observations Strong Black paper Reconstruction Guess the color neural network of the background! Reconstructed images White paper Weak

Option 1. DC = Camera + retrorefl. Option 2. 25 kHz = ReMark

With ReMark, even guessing 1-bit information is next to random guess!

Conclusion

- Implemented a fiducial marker system (detection + identification) which removes sensitive information before it enters **digital realm**
- Single-pixel imaging (SPI) + retroreflector = **Frequency** + **intensity filtering**
- Performance numbers:

Detection

99% detection rate 28.9 fps detection frame rate Support 200 cm/s mobility

Identification

2.1% decode error rate 4.7 marker/s identification rate

ReMark: Privacy-reserving Fiducial Marker System via Single-Pixel Imaging

Tzu-Hsu Yu and Hsin-Mu (Michael) Tsai

National Taiwan University

Email: hsinmu@ntu.edu.tw

Find out more about our papers!

