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Translucent Screen Region

Normal Screen Region

Full-Screen Smartphone Under-Screen Camera

Under-screen camera

Samsung ZTE Xiaomi
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Images formed in different scenarios

Conventional Camera

Under-Screen Camera

Inactive translucent screen

Active translucent screen

Under-Screen Camera

+ Passive screen perturbation

+ Active screen perturbation
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Screen perturbation

Conventional 
Front Camera

Alice

Face Recognition

Perturbation

Under-Screen 
Camera

Bob

Face Recognition

Translucent screen

Screen perturbation: A software-defined 

perturbation that modifies the pixels 

displayed on the translucent screen region 

to nullify ML models 

Defenders can proactively activate screen-

pixels to thwart unauthorized ML models 

Attackers can manipulate imperceptible 

screen-pixels to disrupt legitimate ML models
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Key difference for screen perturbation

Privacy fears as MILLIONS of 

photos used to train facial 

recognition AI without users' 

consent (Source: Daily Mail Online)

1) Secure but block everything

2) Obstruct the screen display

Camera cover solution:

Perturbation

Under-Screen 
Camera

Bob

Face Recognition

Translucent 
screen

1) Software-defined solution

2) Imperceptible changes

Proposed screen perturbation:
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Image formation model of under-screen camera
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Q3: One color or Two colors

Chromaticity destruction

Q1: How to localize the region that 

has the highest influence on the 

decision making of the ML model?

Q2: Which color should we pick for 

increasing adversarial strength? 

Grad-CAM heatmap Attack region mask

Passive perturbation Red subpixel set Blue subpixel set

88.4%Finch: 93.6%Finch: 67.1%Finch:

Green, 30% bright Green, 80% bright G & B, 10% bright

56.7%Finch: 21.4%Ant: 27.8%Ant:
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Morphology destruction
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Multiple-pixel perturbation

Regional aggregation effect: Adjacent screen-pixel units have similar effect on the 

probabilities of predicted labels   

Red statusbar: 

no pixels changed
1 Red statusbar: 

one pixel changed

2 Red statusbar: 

two pixels changed

3 Red statusbar: 

three pixels changed

4

18.4%Finch: 16.9%Finch: 14%Hourglass: 18.4%Hourglass:

White statusbar

Red statusbar

25.9%Harvestman:

18.4%Hourglass:
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Built testbed & images results

4K Monitor

Full-Screen 
Smartphone
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Image classification task

~20% ~6% ~4%

More results under different target models (MobileNet, ShuffleNet, IncepResNet) can be found in  the paper

ResNet:

Clean 

images:

94.2%

Blurred 

images

(Passive):

74.4%

One-pixel 

perturbed 

image

20.8%

Multiple-pixel 

perturbed 

image

5.8%

Deblurred

images

(Passive):

94.6%

Deblurred

One-pixel 

perturbed 

image

26.8%

Deblurred

Multiple-pixel 

perturbed 

image

9.2%
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Face recognition task

ZTE AXON30 Xiaomi MIX4 Samsung Fold4 Red statusbar Green statusbar

Blue statusbar White statusbar
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User study

30 Participants: 13 female and 17 male, aged between 20 and 45

No one notice any screen perturbation during the use of the smartphones!

One-pixel screen perturbation Multiple-pixel screen perturbation
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Ineffective counter measures

Adversarial training Randomized smoothing

Clean images

94% 87%

Perturbed images

<5% <10%

Clean images

94% 94%

Perturbed images

<5% <7%

Training images 

(1:1 clean: perturbed ratio)

• • • • • •

Classifier Smoothed classifier

Majority vote

Training images 

(with isotropic Gaussian noise)

• • • • • •
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