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Evolution of smartphone screens
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Under-screen camera
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Images formed in different scenarios
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Screen perturbation
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Face Recognition Face Recognition
Defenders can proactively activate screen- Screen perturbation: A software-defined
pixels to thwart unauthorized ML models perturbation that modifies the pixels
displayed on the translucent screen region
Attackers can manipulate imperceptible to nullify ML models
screen-pixels to disrupt legitimate ML models
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Key difference for screen perturbation
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Face Recognition

Privacy fears as MILLIONS of Camera cover solution: Proposed screen perturbation:
photos used to train facial 1) Secure but block everything 1) Software-defined solution

recognition Al without users 2) Obstruct the screen display 2) Imperceptible changes
consent (Source: Daily Mail Online)
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Image formation model of under-screen camera
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Chromaticity destruction

Q1: How to localize the region that
has the highest influence on the I
decision making of the ML model?

Grad-CAM heatmap Attack region mask

Q2: Which color should we pick for
increasing adversarial strength?

88.4% 67.1%
Passive perturbation Red subpixel set Blue subpixel set

Q3: One color or Two colors

56.7% 21.4% 27.8%
Green, 30% bright Green, 80% bright G & B, 10% bright
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Morphology destruction
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Multiple-pixel perturbation

Red statusbar

White statusbar
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Red statusbar: @ Red statusbar: @ Red statusbar: @ Red statusbar:
no pixels changed one pixel changed two pixels changed three pixels changed

25.9%.

Regional aggregation effect: Adjacent screen-pixel units have similar effect on the
probabilities of predicted labels
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Built testbed & images results
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Image classification task
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Clean Blurred One-pixel Multiple-pixel Deblurred Deblurred Deblurred
images: images perturbed perturbed images One-pixel Multiple-pixel
(Passive): image image (Passive): perturbed perturbed
image image
ResNet: 94.2% 74.4% 20.8% 5.8% 94.6% 26.8% 9.2%
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More results under different target models (MobileNet, ShuffleNet, IncepResNet) can be found in the paper
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Face recognition task
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User study

30 Participants: 13 female and 17 male, aged between 20 and 45

One-pixel screen perturbation Multiple-pixel screen perturbation
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No one notice any screen perturbation during the use of the smartphones!
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Ineffective counter measures

Adversarial training Randomized smoothing
Training images - Training images
(1:1 clean: perturbed ratio) Classifier (with isotropic Gaussian noise)

- Smoothed classifier
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Clean images Perturbed images Clean images Perturbed images

94% ‘ 87% <5% ‘ <10% 94% ‘ 94% <5% ‘ <7%
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