

Screen Perturbation: Adversarial Attack and Defense on Under-Screen Camera

Hanting Ye*, Guohao Lan*, Jinyuan Jia†, Qing Wang*

*Delft University of Technology

†The Pennsylvania State University

October 3rd, 2023

Evolution of smartphone screens

Under-screen camera

Images formed in different scenarios

Screen perturbation

Defenders can proactively activate screenpixels to thwart unauthorized ML models

Attackers can manipulate imperceptible screen-pixels to disrupt legitimate ML models

Screen perturbation: A software-defined perturbation that modifies the pixels displayed on the translucent screen region to nullify ML models

Key difference for screen perturbation

Camera cover solution:

- 1) Secure but block everything
- 2) Obstruct the screen display

Proposed screen perturbation:

- 1) Software-defined solution
- 2) Imperceptible changes

Image formation model of under-screen camera

Chromaticity destruction

Q1: How to **localize** the region that has the highest influence on the decision making of the ML model?

Grad-CAM heatmap

Attack region mask

Q2: Which **color** should we pick for increasing adversarial strength?

Passive perturbation

Red subpixel set

Blue subpixel set

Q3: One color or Two colors

Green, 30% bright

Green, 80% bright

G & B, 10% bright

Morphology destruction

New screen configuration to generate screen configuration of no perturbation screen perturbation $s(\hat{l},j) = \frac{\Phi\left(\boldsymbol{I} \oplus \boldsymbol{z}_{j,c,b}, \hat{l}\right) - \Phi\left(\boldsymbol{I} \oplus \boldsymbol{z}, \hat{l}\right)}{\Phi\left(\boldsymbol{I} \oplus \boldsymbol{z}, \hat{l}\right)}$

j: screen-pixel *location*

 $oldsymbol{c}$: screen-pixel color

b: screen-pixel brightness

The most susceptible label

$$\tilde{l}_j = \arg\max_{\hat{l}} s(\hat{l}, j)$$

Picked screenpixel location

$$j = \arg\max_{\hat{i}} s\left(\tilde{l}_{i}, \hat{j}\right)$$

..... Decision boundary

 $\Phi(I,l)$: Predicting probability of classifier Φ in classifying the image I with label l

Multiple-pixel perturbation

Regional aggregation effect: **Adjacent** screen-pixel units have similar effect on the probabilities of predicted labels

Built testbed & images results

Image classification task

More results under different target models (MobileNet, ShuffleNet, IncepResNet) can be found in the paper

Face recognition task

Xiaomi MIX4

Samsung Fold4

Red statusbar

Blue statusbar

Green statusbar

White statusbar

12

User study

30 Participants: 13 female and 17 male, aged between 20 and 45

No one notice any screen perturbation during the use of the smartphones!

Ineffective counter measures

Adversarial training

Randomized smoothing

This work has been funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement ENLIGHTEM No. 814215

THANK YOU

