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AI is Transforming the World, with Cloud + Edge

Cloud AI
multi-domain, multi-task, general-

purpose services

Edge AI
Domain-specific, real-time, privacy-sensitve 

applications
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Environment Diversity is a Main Challenge in Edge AI

• Device diversity is a main challenge
a) hardware diversity 
b) Intra-device diversity (backend 

number, software version, 
temperature)

c) data distribution diversity

• DNNs are expected to meet certain 
constant latency requirements.

Challenge: Generate models for 
diverse edge environments.
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Conventional: Pre-deployment Model Generation

• Most popular techniques: Neural 
Architecture Search (NAS), Model Pruning, etc.

• Limitations:

1. Requires collecting privacy 
information about computational 
resources, runtime conditions, data 
distribution, etc.

2. High maintenance cost. Less 
practical in many edge/mobile scenarios 
where the model execution environments 
may be very diverse and dynamic.

Variant N

Customize
Deploy

Collect data
Cloud Edge

Variant 2

Variant 1

Device N

Device 2

Device 1

Model



5

Conventional: Pre-deployment On-cloud Model 
Generation

3.  Modeling the edge environment may be 
difficult.

• The cloud-based model generation relies on 
accuracy and latency predictors

• The unified accuracy predictor may not 
perform well for edge devices with data 
distribution shifts.

Performance of accuracy predictor on non-iid edge data. The 
edge data is simulated with Dirichlet distributions with (a) � = 
0.005 and (b) � = 0.1. The sample ratios of top-50 classes are 
shown in (c) and (d).
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Solution: Post-deployment Neural Architecture 
Adaptation
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Benefits:

• Directly evaluate the a given DNN 
without accuracy predictor, which is 
more precise.

• A plug-and-play process, reduces the 
computation overhead of the cloud.

• Protects user privacy.

Related work in mobile community: on-device model scaling (NestDNN, LegoDNN, etc.):

Limited model space; Still relying on performance predictors.
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Challenges

Generating the model search space for edge devices is 
difficult.

• The search space should be large and flexible 
enough.

• Should contain high-quality candidate models for 
edge devices.

The model performance evaluation process can be time-
consuming at the edge.

• Limited computing resources and tight deadline of 
model initialization.

• The edge environment is dynamic.
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AdaptiveNet: System Design

Edge-friendly Subnet Search

Cloud

Edge

Pretrained Model

Pretraning-assisted Model Elastification

Elasticized Supernet

Distillation-based 
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Elasticized Supernet

Block-wise 
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Evaluation
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 Tree-based 
Feature Cache

Granularity-aware 
Graph Expansion

The architecture overview of AdaptiveNet 
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Cloud Stage: Graph Expansion
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1. Given an arbitrary pre-trained DNN, We discover the repeating basic 
blocks (��

(�)~��
(�)) in the DNN.
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Cloud Stage: Graph Expansion

2. We convert the given pre-trained DNN into a supernet by 
adding merged blocks (��

(�), ��
(�)) and pruned blocks (��

(−�)).
The supernet encompasses a large search space of subnets.
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Cloud Stage: Distillation-based Training

Branch distillation phase: 
• Adopt feature-based knowledge distillation (Pre-trained model as the teacher). 
• In each iteration, randomly sample a subnet from the supernet and use the pre-

trained model as the teacher model to train the new branches in the subnet.
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Cloud Stage: Distillation-based Training

Further tuning phase: 
• Further train the supernet using labelled data.
• In each iteration, randomly sample a subnet and forward a batch of samples, 

compute the Cross-Entropy loss and update the parameters of the new 
branches.
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Edge Stage: Overview

• Edge Stage is to obtain the optimal architecture adaptively in the target environment by 
searching the subnet space.

• Using a normal search method as in NAS can cost more than 10 hours on edge 
devices. Most of the searching time is spent on evaluating the subnets.
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Edge Stage: Search Strategy

Taking the example of Genetic Algorithm (GA) - based search strategy: 

1. Build Latency Table � =  ��
�   (��

� is the latency of ��
�).  Thus, the latency of a chosen subnet 

is the sum of all its blocks.

2. Generate the initial candidate subnets by randomly sampling a group of subnets whose 
latencies are near the latency budget.

3. In each iteration, mutate subnets by replacing branches.  (Make sure the mutated 
subnets are also near the latency budget).
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Edge Stage: Evaluator

• In each iteration, we usually need to evaluate 
hundreds of candidate subnets with the edge 
data to find the most accurate ones.

• The candidate subnets usually share common 
prefix substructures, so we can reuse common 
intermediate features across subnets.

• We introduce a tree-based feature cache to 
schedule the evaluation (Right Figure).
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Edge Stage: Dynamic Model Update

• After searching, the subnets achieving the highest accuracy at different levels of latency are 
saved.

• AdaptiveNet dynamically pages in and pages out alternative blocks when the environment 
changes.
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Evaluation: Experimental Setup 
1. Edge devices: 

• Android Smartphone (Xiaomi 12) with Snapdragon 8 Gen 1 CPU and 8 GB memory
• Jetson Nano with 4 GB memory
• Edge server with NVIDIA 3090 Ti with 24 GB GPU memory

2. Baselines:
• LegoDNN [1]: a pruning based, block-grained technique for model scaling
• Slimmable Networks [2], FlexDNN [3], SkipNet [4]: dynamic neural networks with flexible 

widths, depths, and layers.

3. Tasks, Models, and Datasets:

[1] Han et al. LegoDNN: Block-Grained Scaling of Deep Neural Networks for Mobile Vision. (MobiCom 2021)
[2] Yu et al. Slimmable Neural Networks. (ICLR 2019)
[3] Fang et al. FlexDNN: Input-Adaptive On-Device Deep Learning for Efficient Mobile Vision. (SEC 2020).
[4] Wang et al. SkipNet: Learning Dynamic Routing in Convolutional Networks. (ECCV 2019).

Task Model Dataset

Image classification MobileNetV2, ResNet. ImageNet2012

Object detection EfficientDet COCO2017

Semantic segmentation FPN CamVid
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Evaluation: Model Scaling 

• AdaptiveNet achieves higher accuracy 
than baseline approaches at almost 
every latency budget.

• Increases accuracy by 10.44% and 
28.03% on average compared to 
LegoDNN with 90% and 70% latency 
budget respectively.

• AdaptiveNet outperforms the baseline 
models more at a lower latency budget 
thanks to the merging blocks.
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Evaluation: Model Scaling and Training Efficiency 

 Quality of models generated for detection and segmentation tasks.
 Training efficiency of on-
cloud elastification.

Speed of evaluating a 
group of subnets. 

Optimal accuracy achieved 
with different num of subnets.

Optimal accuracy achieved 
with different search time.
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Conclusion and Outlook

• AdaptiveNet is a novel approach for on-device, post deployment, and environment-aware model 
architecture generation. 

• It is an end-to-end system equipped with on-cloud model elastification and on-device model 
adaptation.

• Future work

• Generalize AdaptiveNet to pre-trained/foundation models.

• Design supernets that can adapt to edge data distributions.

• Generate subnets that can deal with domain-specific tasks directly.

Open sourced: https://github.com/wenh18/AdaptiveNet
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