
AdaptiveNet: Post-deployment Neural Architecture
Adaptation for Diverse Edge Environments

2023-10-7

Hao Wen1, Yuanchun Li1, Zunshuai Zhang3, Shiqi Jiang3, Xiaozhou Ye4, Ye Ouyang4,
Yaqin Zhang1, Yunxin Liu1

1Institute for AI Industry Research, Tsinghua University
2Shanghai University 3Microsoft Research 4AsiaInfo Technologies (China), Inc.

MobiCom 2023

2

AI is Transforming the World, with Cloud + Edge

Cloud AI
multi-domain, multi-task, general-

purpose services

Edge AI
Domain-specific, real-time, privacy-sensitve

applications

3

Environment Diversity is a Main Challenge in Edge AI

• Device diversity is a main challenge
a) hardware diversity
b) Intra-device diversity (backend

number, software version,
temperature)

c) data distribution diversity

• DNNs are expected to meet certain
constant latency requirements.

Challenge: Generate models for
diverse edge environments.

0

200

400

latency of ResNet50 on different
devices (ms)

 Device1 Device2 Device3 Device4

0

50

100

150

latency of ResNet50 in different
environments (ms)

 Normal 1
backend

2
backends

CUDA
changed

Batch size
changed

4

Conventional: Pre-deployment Model Generation

• Most popular techniques: Neural
Architecture Search (NAS), Model Pruning, etc.

• Limitations:

1. Requires collecting privacy
information about computational
resources, runtime conditions, data
distribution, etc.

2. High maintenance cost. Less
practical in many edge/mobile scenarios
where the model execution environments
may be very diverse and dynamic.

Variant N

Customize
Deploy

Collect data
Cloud Edge

Variant 2

Variant 1

Device N

Device 2

Device 1

Model

5

Conventional: Pre-deployment On-cloud Model
Generation

3. Modeling the edge environment may be
difficult.

• The cloud-based model generation relies on
accuracy and latency predictors

• The unified accuracy predictor may not
perform well for edge devices with data
distribution shifts.

Performance of accuracy predictor on non-iid edge data. The
edge data is simulated with Dirichlet distributions with (a) � =
0.005 and (b) � = 0.1. The sample ratios of top-50 classes are
shown in (c) and (d).

6

Solution: Post-deployment Neural Architecture
Adaptation

Subnet N

Elasticize

Deploy

Cloud Edge

Subnet 2

Subnet 1

Device N

Device 2

Device 1Model

Supernet

Adapt

Benefits:

• Directly evaluate the a given DNN
without accuracy predictor, which is
more precise.

• A plug-and-play process, reduces the
computation overhead of the cloud.

• Protects user privacy.

Related work in mobile community: on-device model scaling (NestDNN, LegoDNN, etc.):

Limited model space; Still relying on performance predictors.

7

Challenges

Generating the model search space for edge devices is
difficult.

• The search space should be large and flexible
enough.

• Should contain high-quality candidate models for
edge devices.

The model performance evaluation process can be time-
consuming at the edge.

• Limited computing resources and tight deadline of
model initialization.

• The edge environment is dynamic.

Edge＆mobile Devices

Model trained on the cloud

Dataset
train

deploy

Method

2023-10-7

9

AdaptiveNet: System Design

Edge-friendly Subnet Search

Cloud

Edge

Pretrained Model

Pretraning-assisted Model Elastification

Elasticized Supernet

Distillation-based
Training

Elasticized Supernet

Block-wise
Profiling

Model-guided
Search Strategy

Reused-based
Subnet

Evaluation

Edge Data

Subnets

Feedback
Edge Serving Model

Real-time
Monitor

Dynamic Update

 Tree-based
Feature Cache

Granularity-aware
Graph Expansion

The architecture overview of AdaptiveNet

10

Cloud Stage: Graph Expansion

��
(�) ��+�

(�) ��+�
(�) ��+�

(�) ~��
(�)

��
(�)~��−�

(�)

1. Given an arbitrary pre-trained DNN, We discover the repeating basic
blocks (��

(�)~��
(�)) in the DNN.

11

��
(�)

��
(�) ��+�

(�) ��+�
(�) ��+�

(�) ~��
(�)

��+�
(�)

��
(�)~��−�

(�)

��
(−�) ��+�

(−�) ��+�
(−�)

��
(�)

Cloud Stage: Graph Expansion

2. We convert the given pre-trained DNN into a supernet by
adding merged blocks (��

(�), ��
(�)) and pruned blocks (��

(−�)).
The supernet encompasses a large search space of subnets.

12

Cloud Stage: Distillation-based Training

Branch distillation phase:
• Adopt feature-based knowledge distillation (Pre-trained model as the teacher).
• In each iteration, randomly sample a subnet from the supernet and use the pre-

trained model as the teacher model to train the new branches in the subnet.

��
(�) ��+�

(�)

��
(�)~��−�

(�)

퐥퐨���+�

��+�

��+�

퐥퐨���+�

��+�

��+�
Input

Input

퐒퐮퐩퐞��퐞怀

퐏�퐞 − 怀�퐚��퐞똀 퐦퐨똀퐞퐥

��
(�)~��−�

(�) ��
(�) ��+�

(�) ��+�
(�) ��+�

(�)

��+�
(�) ~��

(�)

��+�
(�) ~��

(�)

13

Cloud Stage: Distillation-based Training

Further tuning phase:
• Further train the supernet using labelled data.
• In each iteration, randomly sample a subnet and forward a batch of samples,

compute the Cross-Entropy loss and update the parameters of the new
branches.

��
(�) ��+�

(�)

��
(�)~��−�

(�)Input

퐒퐮퐩퐞��퐞怀

��+�
(�) ~��

(�) Output CE Loss

Label

14

Edge Stage: Overview

• Edge Stage is to obtain the optimal architecture adaptively in the target environment by
searching the subnet space.

• Using a normal search method as in NAS can cost more than 10 hours on edge
devices. Most of the searching time is spent on evaluating the subnets.

Supernet

Sampled subnets

Search
Strategy

Evaluator

Optimal
subnet

Latency-Accuracy Profiling

15

Edge Stage: Search Strategy

Taking the example of Genetic Algorithm (GA) - based search strategy:

1. Build Latency Table � = ��
� (��

� is the latency of ��
�). Thus, the latency of a chosen subnet

is the sum of all its blocks.

2. Generate the initial candidate subnets by randomly sampling a group of subnets whose
latencies are near the latency budget.

3. In each iteration, mutate subnets by replacing branches. (Make sure the mutated
subnets are also near the latency budget).

16

Edge Stage: Evaluator

• In each iteration, we usually need to evaluate
hundreds of candidate subnets with the edge
data to find the most accurate ones.

• The candidate subnets usually share common
prefix substructures, so we can reuse common
intermediate features across subnets.

• We introduce a tree-based feature cache to
schedule the evaluation (Right Figure).

17

Edge Stage: Dynamic Model Update

• After searching, the subnets achieving the highest accuracy at different levels of latency are
saved.

• AdaptiveNet dynamically pages in and pages out alternative blocks when the environment
changes.

Evaluation

2023-10-7

19

Evaluation: Experimental Setup
1. Edge devices:

• Android Smartphone (Xiaomi 12) with Snapdragon 8 Gen 1 CPU and 8 GB memory
• Jetson Nano with 4 GB memory
• Edge server with NVIDIA 3090 Ti with 24 GB GPU memory

2. Baselines:
• LegoDNN [1]: a pruning based, block-grained technique for model scaling
• Slimmable Networks [2], FlexDNN [3], SkipNet [4]: dynamic neural networks with flexible

widths, depths, and layers.

3. Tasks, Models, and Datasets:

[1] Han et al. LegoDNN: Block-Grained Scaling of Deep Neural Networks for Mobile Vision. (MobiCom 2021)
[2] Yu et al. Slimmable Neural Networks. (ICLR 2019)
[3] Fang et al. FlexDNN: Input-Adaptive On-Device Deep Learning for Efficient Mobile Vision. (SEC 2020).
[4] Wang et al. SkipNet: Learning Dynamic Routing in Convolutional Networks. (ECCV 2019).

Task Model Dataset

Image classification MobileNetV2, ResNet. ImageNet2012

Object detection EfficientDet COCO2017

Semantic segmentation FPN CamVid

20

Evaluation: Model Scaling

• AdaptiveNet achieves higher accuracy
than baseline approaches at almost
every latency budget.

• Increases accuracy by 10.44% and
28.03% on average compared to
LegoDNN with 90% and 70% latency
budget respectively.

• AdaptiveNet outperforms the baseline
models more at a lower latency budget
thanks to the merging blocks.

21

Evaluation: Model Scaling and Training Efficiency

 Quality of models generated for detection and segmentation tasks.
 Training efficiency of on-
cloud elastification.

Speed of evaluating a
group of subnets.

Optimal accuracy achieved
with different num of subnets.

Optimal accuracy achieved
with different search time.

22

Conclusion and Outlook

• AdaptiveNet is a novel approach for on-device, post deployment, and environment-aware model
architecture generation.

• It is an end-to-end system equipped with on-cloud model elastification and on-device model
adaptation.

• Future work

• Generalize AdaptiveNet to pre-trained/foundation models.

• Design supernets that can adapt to edge data distributions.

• Generate subnets that can deal with domain-specific tasks directly.

Open sourced: https://github.com/wenh18/AdaptiveNet

Thanks !

2023-10-7

AdaptiveNet: Post-deployment Neural Architecture
Adaptation for Diverse Edge Environments

Hao Wen1, Yuanchun Li1, Zunshuai Zhang3, Shiqi Jiang3, Xiaozhou Ye4, Ye Ouyang4, Yaqin
Zhang1, Yunxin Liu1

1Institute for AI Industry Research, Tsinghua University
2Shanghai University 3Microsoft Research 4AsiaInfo Technologies (China), Inc.

