

AdaptiveNet: Post-deployment Neural Architecture Adaptation for Diverse Edge Environments

Hao Wen¹, Yuanchun Li¹, Zunshuai Zhang³, Shiqi Jiang³, Xiaozhou Ye⁴, Ye Ouyang⁴, Yaqin Zhang¹, Yunxin Liu¹

¹Institute for AI Industry Research, Tsinghua University ²Shanghai University ³Microsoft Research ⁴AsiaInfo Technologies (China), Inc.

Al is Transforming the World, with Cloud + Edge

Cloud Al multi-domain, multi-task, generalpurpose services

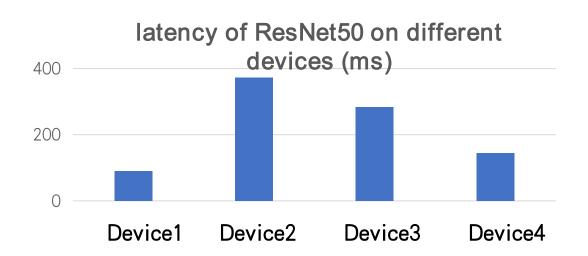
Edge Al

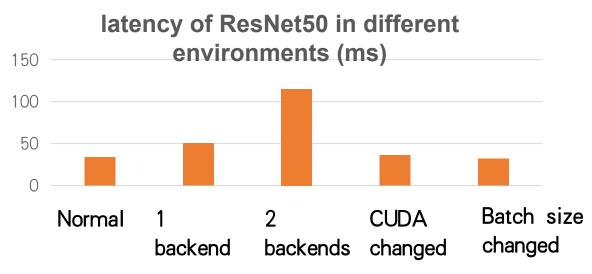
Domain-specific, real-time, privacy-sensitve applications

Environment Diversity is a Main Challenge in Edge Al

- Device diversity is a main challenge
 - a) hardware diversity
 - b) Intra-device diversity (backend number, software version, temperature)
 - c) data distribution diversity
- DNNs are expected to meet certain constant latency requirements.

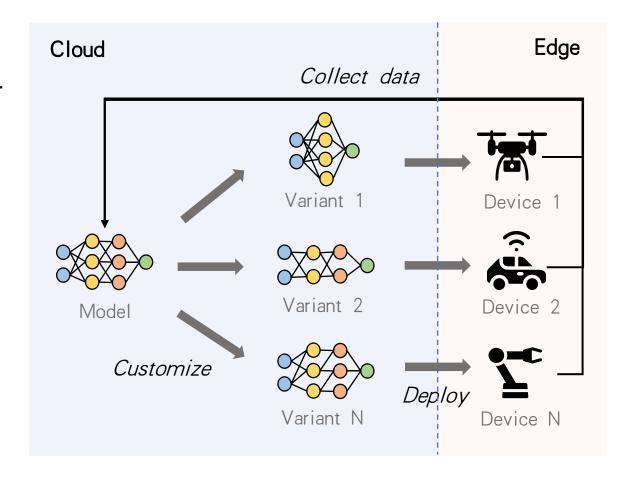
Challenge: Generate models for diverse edge environments.





Conventional: Pre-deployment Model Generation

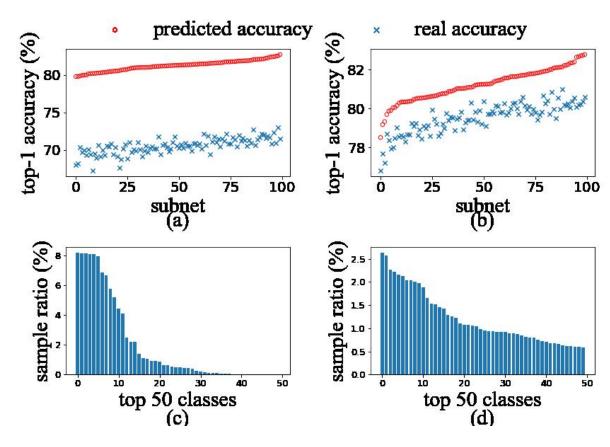
- Most popular techniques: Neural Architecture Search (NAS), Model Pruning, etc.
- Limitations:
 - 1. Requires collecting privacy information about computational resources, runtime conditions, data distribution, etc.
 - 2. High maintenance cost. Less practical in many edge/mobile scenarios where the model execution environments may be very diverse and dynamic.



Conventional: Pre-deployment On-cloud Model Generation

3. Modeling the edge environment may be difficult.

- The cloud-based model generation relies on accuracy and latency predictors
- The unified accuracy predictor may not perform well for edge devices with data distribution shifts.

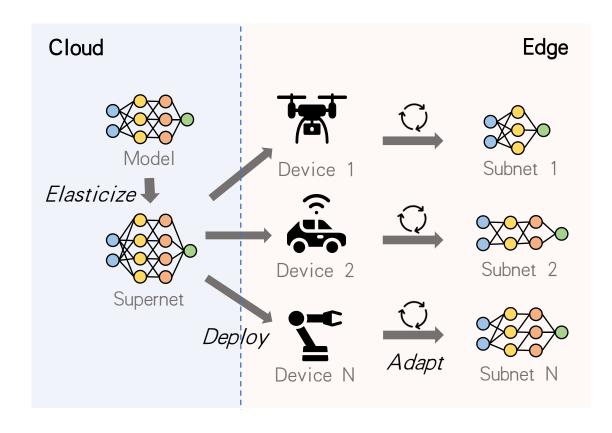


Performance of accuracy predictor on non-iid edge data. The edge data is simulated with Dirichlet distributions with (a) α = 0.005 and (b) α = 0.1. The sample ratios of top-50 classes are shown in (c) and (d).

Solution: Post-deployment Neural Architecture Adaptation

Benefits:

- Directly evaluate the a given DNN
 without accuracy predictor, which is
 more precise.
- A plug-and-play process, reduces the computation overhead of the cloud.
- Protects user privacy.



Related work in mobile community: on-device model scaling (NestDNN, LegoDNN, etc.):

Limited model space; Still relying on performance predictors.

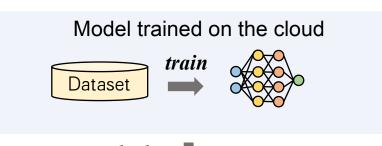
Challenges

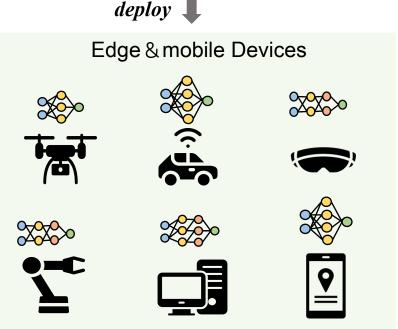
Generating the model search space for edge devices is difficult.

- The search space should be *large* and *flexible* enough.
- Should contain *high-quality candidate models* for edge devices.

The model performance evaluation process can be timeconsuming at the edge.

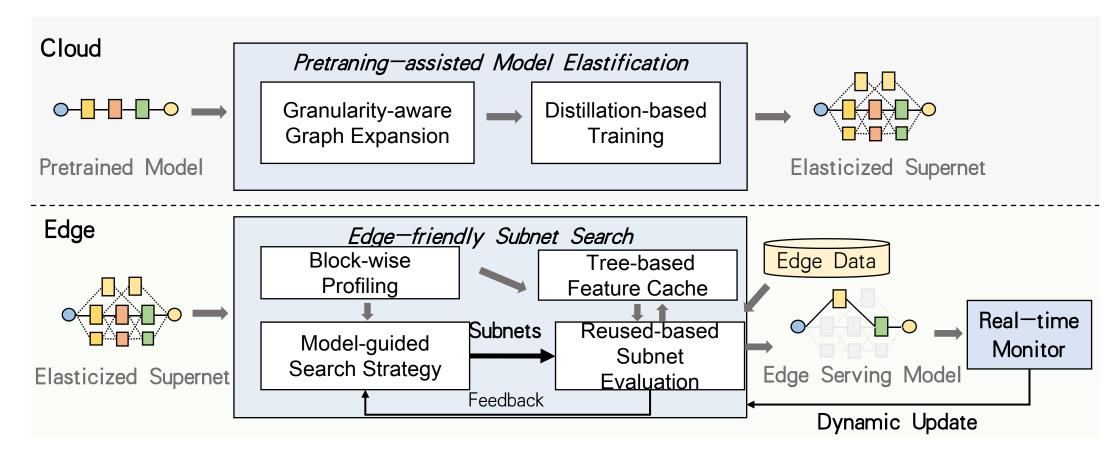
- Limited computing resources and tight deadline of model initialization.
- The edge environment is dynamic.





Method

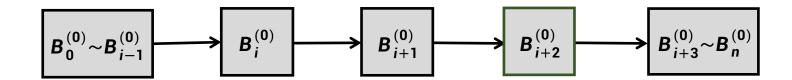
AdaptiveNet: System Design



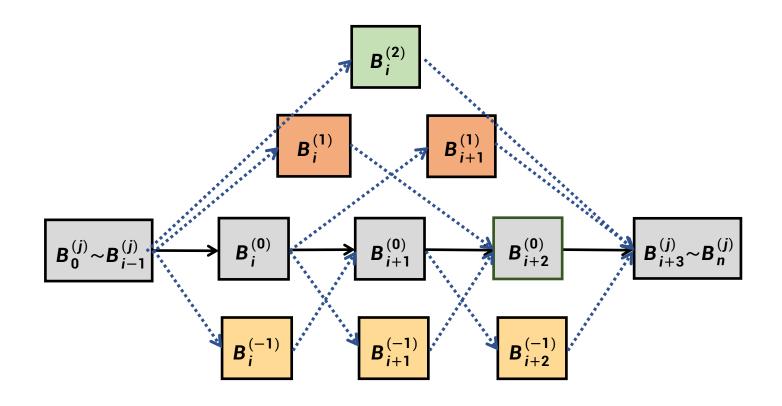
The architecture overview of AdaptiveNet

Cloud Stage: Graph Expansion

1. Given an arbitrary pre-trained DNN, We discover the repeating **basic blocks** $(B_0^{(0)} \sim B_n^{(0)})$ in the DNN.

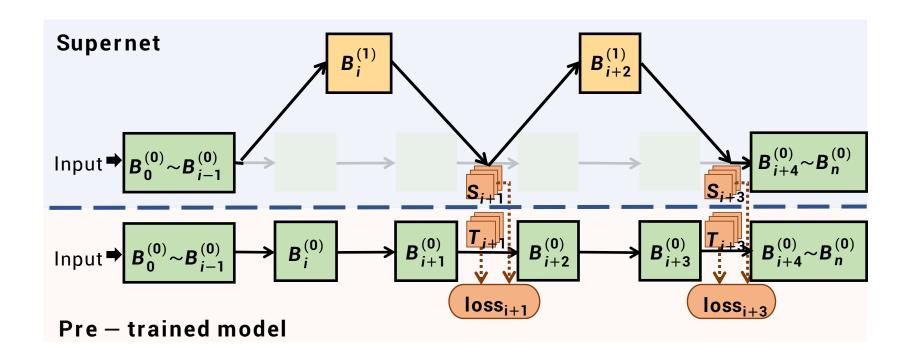


Cloud Stage: Graph Expansion



2. We convert the given pre-trained DNN into a *supernet* by adding *merged blocks* $(B_i^{(1)}, B_i^{(2)})$ and *pruned blocks* $(B_i^{(-1)})$. The *supernet* encompasses a large search space of *subnets*.

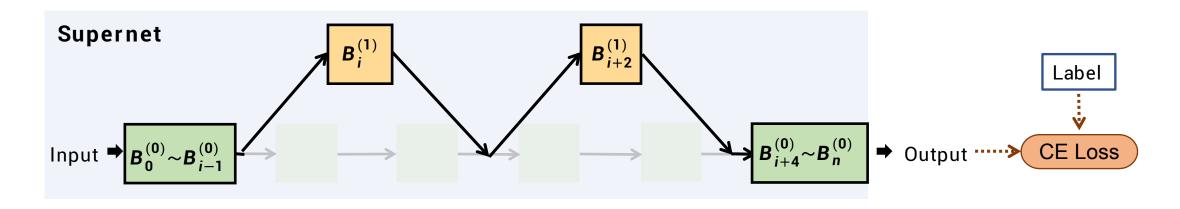
Cloud Stage: Distillation-based Training



Branch distillation phase:

- Adopt feature-based knowledge distillation (Pre-trained model as the teacher).
- In each iteration, randomly sample a subnet from the supernet and use the pretrained model as the teacher model to train the new branches in the subnet.

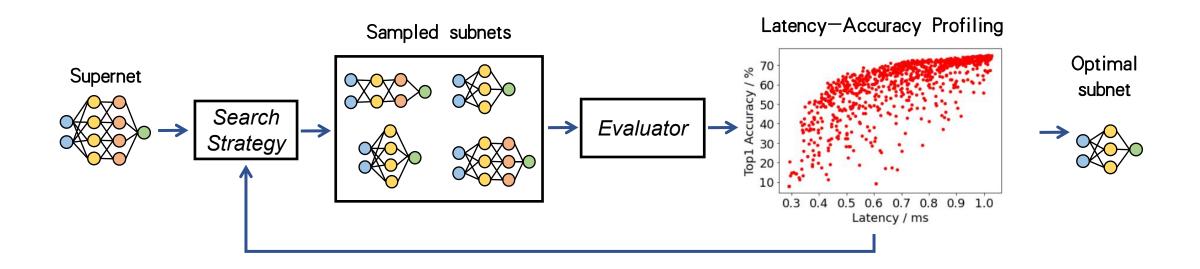
Cloud Stage: Distillation-based Training



Further tuning phase:

- Further train the supernet using labelled data.
- In each iteration, randomly sample a subnet and forward a batch of samples, compute the Cross-Entropy loss and update the parameters of the new branches.

Edge Stage: Overview



- **Edge Stage** is to obtain the optimal architecture adaptively in the target environment by searching the subnet space.
- Using a normal search method as in NAS can cost more than 10 hours on edge devices. Most of the searching time is spent on evaluating the subnets.

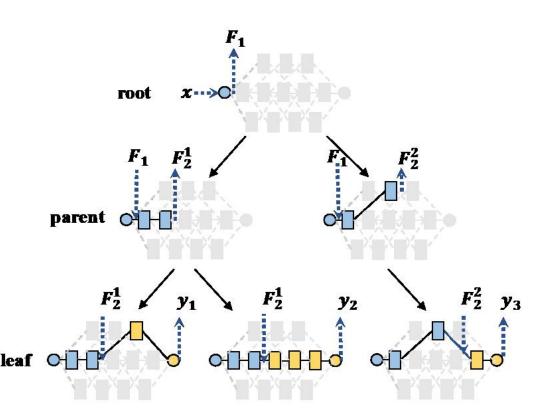
Edge Stage: Search Strategy

Taking the example of *Genetic Algorithm (GA)* - based search strategy:

- 1. Build Latency Table $T = \{t_i^j\}$ (t_i^j) is the latency of B_i^j . Thus, the latency of a chosen subnet is the sum of all its blocks.
- 2. Generate the *initial candidate subnets* by randomly sampling a group of subnets whose latencies are near the *latency budget*.
- 3. In each iteration, mutate subnets by replacing branches. (Make sure the mutated subnets are also near the latency budget).

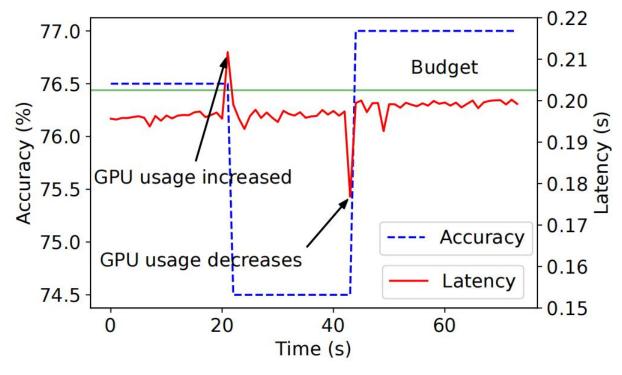
Edge Stage: Evaluator

- In each iteration, we usually need to evaluate
 hundreds of candidate subnets with the edge
 data to find the most accurate ones.
- The candidate subnets usually share common prefix substructures, so we can reuse common intermediate features across subnets.
- We introduce a tree-based feature cache to schedule the evaluation (Right Figure).



Edge Stage: Dynamic Model Update

- After searching, the subnets achieving the highest accuracy at different levels of latency are saved.
- AdaptiveNet dynamically pages in and pages out alternative blocks when the environment changes.



Evaluation

Evaluation: Experimental Setup

1. Edge devices:

- Android Smartphone (Xiaomi 12) with Snapdragon 8 Gen 1 CPU and 8 GB memory
- Jetson Nano with 4 GB memory
- Edge server with NVIDIA 3090 Ti with 24 GB GPU memory

2 Baselines:

- LegoDNN [1]: a pruning based, block-grained technique for model scaling
- Slimmable Networks [2], FlexDNN [3], SkipNet [4]: dynamic neural networks with flexible widths, depths, and layers.

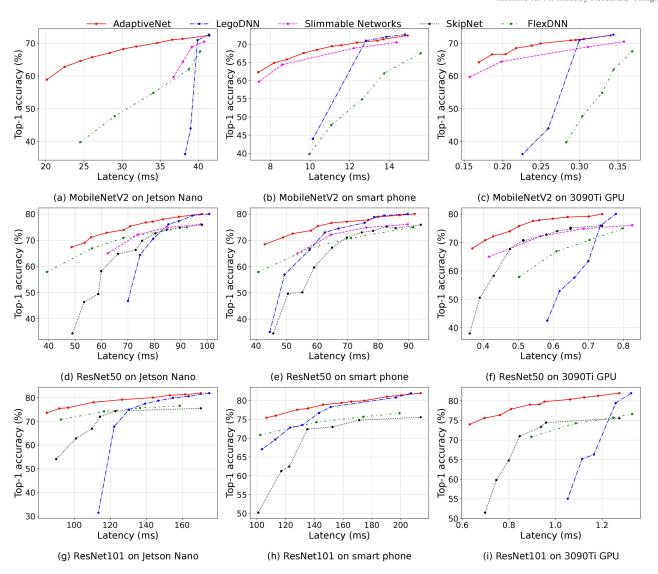
3. Tasks, Models, and Datasets:

Task	Model	Dataset
Image classification	MobileNetV2, ResNet.	ImageNet2012
Object detection	EfficientDet	COCO2017
Semantic segmentation	FPN	CamVid

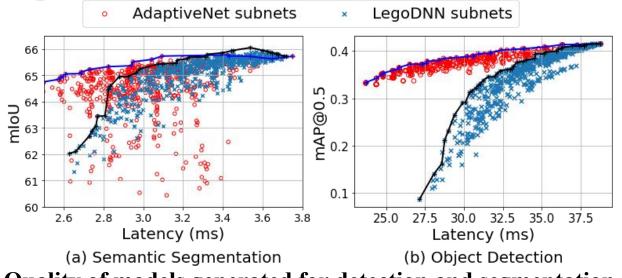
- [1] Han et al. LegoDNN: Block-Grained Scaling of Deep Neural Networks for Mobile Vision. (MobiCom 2021)
- [2] Yu et al. Slimmable Neural Networks. (ICLR 2019)
- [3] Fang et al. FlexDNN: Input-Adaptive On-Device Deep Learning for Efficient Mobile Vision. (SEC 2020).
- [4] Wang et al. SkipNet: Learning Dynamic Routing in Convolutional Networks. (ECCV 2019).

Evaluation: Model Scaling

- AdaptiveNet achieves higher accuracy than baseline approaches at almost every latency budget.
- Increases accuracy by 10.44% and 28.03% on average compared to LegoDNN with 90% and 70% latency budget respectively.
- AdaptiveNet outperforms the baseline models more at a lower latency budget thanks to the merging blocks.



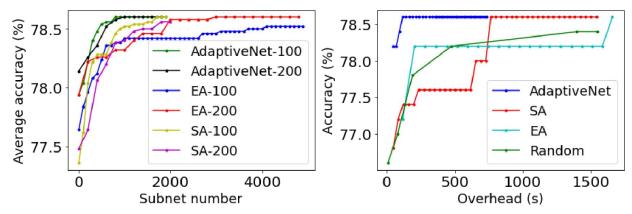
Evaluation: Model Scaling and Training Efficiency



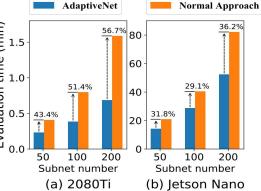
71.27 end of distillation accuracy (%) 64.12 Distillation Naive Ours 10 20 30 50 60 Epoch

Quality of models generated for detection and segmentation tasks.

Training efficiency of oncloud elastification.



Evaluation time (min)



Optimal accuracy achieved with different num of subnets. with different search time.

Optimal accuracy achieved

Speed of evaluating a group of subnets.

Conclusion and Outlook

- AdaptiveNet is a novel approach for **on-device**, **post deployment**, and **environment-aware** model architecture generation.
- It is an end-to-end system equipped with **on-cloud model elastification** and **on-device model adaptation**.
- Future work
 - Generalize AdaptiveNet to pre-trained/foundation models.
 - Design supernets that can adapt to edge data distributions.
 - Generate subnets that can deal with **domain-specific tasks** directly.

Open sourced: https://github.com/wenh18/AdaptiveNet

Thanks!

AdaptiveNet: Post-deployment Neural Architecture Adaptation for Diverse Edge Environments

Hao Wen¹, Yuanchun Li¹, Zunshuai Zhang³, Shiqi Jiang³, Xiaozhou Ye⁴, Ye Ouyang⁴, Yaqin Zhang¹, Yunxin Liu¹

¹Institute for AI Industry Research, Tsinghua University ²Shanghai University ³Microsoft Research ⁴AsiaInfo Technologies (China), Inc.