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It is Critical to Enable DNN Inference on Every Device
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Huge Cost of Current DNN Inference on Devices

- Hardware resources cost
- More and more computations, memory, power ...
- Even achieve O(TFLOPs/TB)

- Human labor cost:

- Redesign the kernels, accelerators, for new DNNs
- O(months/years) to deploy new models to customers

ONNX
RUNTIME




Our Strategy:
Towards DNN Inference by Table Lookup (LUT)

« Precompute results for each kernel and save in the table
» Lookup the tables for results during inference

 Advantages:

«  Much reduced computations, power, memory of DNN inference
« A trained model can be directly deployed without reimplementing kernels or hardware

Unified DNN by
table lookup
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What to Store in the Table?
tion tensor

- A vanilla result table is too large for
a computing kernel.

- For FP16 activation tensor x Weight, table
size is 2'® x model size

- Scalar quant activation to FP8, still too large

A set of
numbers

- Qurs: vector quantization (<1bit) for / \
activation | \
- e.g., Vector[1:16] (FP16) to 16 centroids, Vector quant learns Scalar quant
compression ratio 16 x 16 bits / 4 bit = 64 the feature pattern  learns numerical

- Table size is 24/16 = 1 x model size distribution




A Semantic Example for Vector Quantization

- The essence of DNN: Each layer of DNN is to extract a level of
features, and similar features result in similar outputs.
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Related Work Can Only Apply to One Layer

- Maddness!initiates to use product quantization (PQ) to replace
matrix multiplication by LUT.

- PQ is an efficient method for vector quantization.
- It decomposes vector space into sub-vector space and quantize.

- However, Maddness can only replace the last layer of a model by LUT.

B Accuracy — MSE
<100 100
> L
2 50 50 & Error.accumulates and accuracy drops
> while replace more layers with PQ
O
< O 0

1 5 9 13 17
# of Layers to Replace

[1] Davis Blalock and John Guttag. “Multiplying Matrices Without Multiplying”. ICML 2021.



Mismatched Goal of PQ and DNN Centroid Learning

- Issues for current work: the optimization goal of PQ for a matrix
multiplication mismatches with the goal of PQ for DNN.

Goal of product quantization Goal of DNN
4 . ) 4 )
Learn centroids to :
L. . Learn centroids of each
minimize error to a matrix
multiplication 7+ layer to
) , minimize the final loss of
arg min Z Z |AS — Pl the model
p c i
\_ J \_ J




The Key to Apply PQ to DNN: Backpropagation

- It Is necessary to learn centroids of each layer through
backpropagation.

- Pass the final loss to each layer and learn centroids.

- Challenge: vanilla PQ is not differentiable.
- The argmin of encoding function  ¢°(a“) = arg min ||a° - P;;HE
k

- LUT-NN novel training and inference pipeline:
- Differentiable centroid learning for training
- New table lookup operators for inference



LUT-NN Training: Differentiable Centroid Learning

- (1) Soft-PQ centroid learning by Softmax: Softmax for
backpropagation

a vector of input tensor a vector of input tensor

0

0
a a
argmin outputs the nearest cr e _ . 2 softmax outputs the probability
centroid for the input g (a’) = argkmln la° = P of the centroids
Codebooks Layer; LUT table Q> Codebooks Layer; LUT table
PY Py
: Po'b! L Pobf
Py | : §¢(a°) = softmax(— [la® - Pg| By :
. Pob) - popP
; k Ik

Result is read from LUT Result is the dot product of
probability vector and LUT entries

Training forward / Inference Training backward propagation



LUT-NN Training: Differentiable Centroid Learning

- (2) Learned temperature: to learn Softmax X;
. . . €Xp temperature
temperature of each layer during training  softmax(x); = = -
Temperature controls the approximation of Softmax zk:leXp (tempemture)
to argmax.
Our learned temperature achieves
higher accuracy
210 - ®o3 |1
E % 0.9- 8 % ' ;':I ’ _;;:ii_ﬁ \
® 0.5 = E lﬂ_J 'I' * .: !: i ,':Ii
-8 7 S m— § g E-O 2 i :: =: q Ii: ‘
-t 7 - = I :"..; T . :::::
+0.0 4o <0.8 Doq-t i
Temperature ) 0 20000 4000C Kernel Index
1 # of training iterations
temperature — o, soft max(x); - k —— Learned Temp. Annealing Temp.
— Temp.is 1

temperature — 0,soft max(x) — onehot(arg max(x))



LUT-NN Training: Differentiable Centroid Learning

- (3) Scalar-Quantization Aware Training: adapts the approximation
Introduced by scalar quantization.
- Scalar-Quantization level for LUT is not sensitive to final accuracy

Training backward propagation Training forward / Inference
| Codebooks LUT table | " Codebooks Quantized L'Uf'{éb];e
| Pe 012 . FP32toINT8 R
| S S5 PbY . for mem saving | : O, [pSbf
E Pl?u —> : : P]?. RN
1 064X popp ; : > L [pObp
softmax 5 = : argmin =




LUT-NN Training: Differentiable Centroid Learning

- The training can adapt three
levels of approximation

(1) Approximation introduced by
centroids:

Soft-PQ centroid learning by Softmax

(2) Approximation introduced by Softmax :

Learned temperature

(3) Approximation introduced by scalar
quantization:

Quantization Aware Training

Model input
v
: Layer, -.- Layer,;,
il
Output tensor
Backward Forward
____________________________ I 2
. Codebooks LUT table | !i Codebooks Quantized LUT table
2 " =
= 9-12% po, HE 0, [p959
| Pl ] 1 Pro N
: 0.64x [ pop HE - [Ronp
softmax 5 = argmin ”
Calculate gradients, t g [
Adjust centroids,
Rebuild lookup table Output tensor
v
: Layer;,, ... Layer,
Ioss*' v

Model output




LUT-NN Inference: Table Lookup on CPUs

Closest Centroid Search

Keep frequently accessed
centroid table in inner loop

Intra-codebook parallelism

Table read and accumulation

SIMD shuffle instructions for
parallel read results

Mixed precision accumulation

| input tensors

(1)
codeboo ~in reglcache distance
centroids in (B9 ==k computation
wioroos (o B B B
3 Closest Centroid

Search

distances [[l]] [[l]]

argmin I] [l Eintra-é:odebfook closest centroid
. parallelism search

index |]|]|]|]

<_} transpose

ey OO e o] ) e ®

< b vectorized
lookup table .- table lookup
readout M ARM: NEON.TBL
results INTS @ X86: PSHUFB Table read and
[T 1 ... L1 (1) accumulation
INT16 L mixed precision

accumulation

C— - ]
INT32 4




Learn centroids and build lookup table Inference by
| . Table Look-up

 Features
LUT-NN: — =
The first system to i éjﬂ';ﬂﬁjl;
enable pure LUT to
- -_— oy
replace linear RN RN
. - NANINe el ——— " o
computations in DNNs oy =
Transform the model /=g
graph into a graph of LUT | . it model Cemrod [ el =

. Training data Lookup table



Experiment Settings

- Evaluation tasks: Image recognition, speech recognition, NLP, regression

- CIFAR, GTSRB, SVHN, ImageNet, Google Speech Command, GLUE, UTKFace
+ Models: SENet, ResNet, VGG, Bert

- Evaluation devices:
- ARM and x86 CPUs

- Baselines:

+Accuracy: Maddness and original models
- Performance: ONNX Runtime and TVM

- Hyper-parameter setting to tradeoff accuracy and cost
- # centroids = 16, vector length = 9 for 3x3 conv, 4 for 1x1 cony, 32 for fully connect
- Accuracy: maintain with the original model, +1.98% (speech command) to -2.42% (ImageNet).



Performance Improvement in All Dimensions

- Evaluation metrics:
- FLOPs: 5.7xto 16x 4

- Model/disk size: 3.4x to 6.8x 4 +00

- Latency: 1.3x 10 6.8x §
- Memory: 1.4x to 6.5x 4
- Power: 15% to 41.7% {4
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Summarization

- LUT-NN is a new paradigm for DNN inference
- It could greatly reduce the cost of DNN deployment
- lutnn (LUT-NN) - GitHub

On-going work
- Applying LUT-NN to large language and diffusion models

- FPGA implementation for LUT-NN accelerator
- Processing in Memory technique for LUT-NN

Thank youl!

Welcome researchers and intern
students to join our team!


https://github.com/lutnn

Accuracy

- Accuracy difference compared to original models ranges +1.98% (speech
command) to -2.42% (ImageNet).

Model ResNet18 SENet18 VGG11
Dataset LUT-NN | MADDNESS | baseline | LUT-NN | MADDNESS | baseline | LUT-NN | MADDNESS | baseline
CIFAR10 94.40 10.01 95.26 94.48 10.65 95.47 93.89 22.87 95.04
GTSRB 98.73 4.53 98.80 98.36 5.68 98.34 98.55 5.70 99.22
Speech
Commands 93.70 1.49 91.72 93.04 1.49 94.36 93.38 1.49 93.11
SVHN 96.00 20.638 96.67 96.22 20.12 96.60 96.23 29.97 96.62
UTKFace 491 10.51 5.57 4.74 11.02 5.46 5.69 24.57 5.85
ImageNet 67.38 0.10 69.76 68.21 0.17 70.63 68.04 0.16 68.33
Single | Similarity and | Natural Language
Dataset Task Sentence | Paraphrase Inference
SST-2 QQP ONLI RTE Average
Training Dataset Size 67k 364k 105k 2.5k
Test Dataset Size 1.8k 391k 5.4k 3k
BERT base (%) 93.5 71.2 90.5 66.4 80.4
LUT-NN (%) 92.4 69.6 87.4 64.7 78.5




Latency

- Latency reduction is 1.3x (ResNet18)

~ 6.8x (Bert).

- Bert uses larger weight matrix for matrix multiplications, and longer vector for LUT-NN.

Latency (ms)
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Memory and Power

- Memory saving is 1.4x (VGG11) ~ - Power saving is 12% (SeNET18) ~
6.5x (Bert). 42% (Bert).
Model Method | Power (W)
SERT LUT-NN 2.6
LUT-NN =1 ORT TVM TVM 3.7
LUT-NN 2.6
ResNet18 SENetl8  VGG11 ResNet18 - =
S o CIFARIQ) (CIFAR1Q) _ (CIFAR1Q) = ResNetls NN =
150 G120 . 150 ResNet18 (CIFAR i :
< 100 gmo éloo %100 % esNet18 (CIFAR) =31 33
S / 7 _
s =N EN o7 AN 0 Ny | OTNN |2
3 SENetl8  VGG11 BERT TN -
= 150 150 400 N SENET18 (CIFAR) :
100, = N0 5 R N TVM 3.2
s0] = N| 501 £ N?2°° \ LUTNN | 23
old E NI “old 5N gla 5 N veGll TVM 2.9
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