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It is Critical to Enable DNN Inference on Every Device



Huge Cost of Current DNN Inference on Devices

 Hardware resources cost
 More and more computations, memory, power …
 Even achieve O(TFLOPs/TB)
 Human labor cost: 
 Redesign the kernels, accelerators, for new DNNs
 O(months/years) to deploy new models to customers
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Our Strategy: 
Towards DNN Inference by Table Lookup (LUT)

• Precompute results for each kernel and save in the table 
• Lookup the tables for results during inference
• Advantages: 

• Much reduced computations, power, memory of DNN inference
• A trained model can be directly deployed without reimplementing kernels or hardware



What to Store in the Table?

 A vanilla result table is too large for 
a computing kernel.
 For FP16 activation tensor x Weight, table 

size is 216 x model size
 Scalar quant activation to FP8, still too large 

 Ours: vector quantization (<1bit) for 
activation 
 e.g., Vector[1:16] (FP16) to 16 centroids, 

compression ratio 16 x 16 bits / 4 bit = 64 
 Table size is 24/16 = 1 x model size
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A Semantic Example for Vector Quantization

 The essence of DNN: Each layer of DNN is to extract a level of 
features, and similar features result in similar outputs.
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Related Work Can Only Apply to One Layer

 Maddness[1] initiates to use product quantization (PQ) to replace 
matrix multiplication by LUT.
 PQ is an efficient method for vector quantization. 
 It decomposes vector space into sub-vector space and quantize.

 However, Maddness can only replace the last layer of a model by LUT.

[1] Davis Blalock and John Guttag. “Multiplying Matrices Without Multiplying”. ICML 2021.

Error accumulates and accuracy drops 
while replace more layers with PQ



Mismatched Goal of PQ and DNN Centroid Learning

 Issues for current work: the optimization goal of PQ for a matrix 
multiplication mismatches with the goal of PQ for DNN.

Goal of product quantization

Learn centroids to 
minimize error to a matrix 

multiplication 

Goal of DNN

Learn centroids of each 
layer to 

minimize the final loss of 
the model

≠



The Key to Apply PQ to DNN: Backpropagation

 It is necessary to learn centroids of each layer through 
backpropagation.
 Pass the final loss to each layer and learn centroids.

 Challenge: vanilla PQ is not differentiable.
 The argmin of encoding function

 LUT-NN novel training and inference pipeline: 
 Differentiable centroid learning for training
 New table lookup operators for inference   



LUT-NN Training: Differentiable Centroid Learning

 (1) Soft-PQ centroid learning by Softmax: Softmax for 
backpropagation
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LUT-NN Training: Differentiable Centroid Learning

 (2) Learned temperature: to learn Softmax
temperature of each layer during training
 Temperature controls the approximation of Softmax

to argmax.
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Our learned temperature achieves 
higher accuracy 



LUT-NN Training: Differentiable Centroid Learning

 (3) Scalar-Quantization Aware Training: adapts the approximation 
introduced by scalar quantization.
 Scalar-Quantization level for LUT is not sensitive to final accuracy 
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LUT-NN Training: Differentiable Centroid Learning

 The training can adapt three 
levels of approximation
(1) Approximation introduced by 
centroids:

Soft-PQ centroid learning by Softmax
(2) Approximation introduced by Softmax :

Learned temperature
(3) Approximation introduced by scalar 
quantization:

Quantization Aware Training



LUT-NN Inference: Table Lookup on CPUs
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 Closest Centroid Search
 Keep frequently accessed 

centroid table in inner loop
 Intra-codebook parallelism

 Table read and accumulation
 SIMD shuffle instructions for 

parallel read results 
 Mixed precision accumulation



LUT-NN: 
The first system to 
enable pure LUT to 
replace linear 
computations in DNNs

Transform the model 
graph into a graph of LUT



Experiment Settings

 Evaluation tasks: Image recognition, speech recognition, NLP, regression 
 CIFAR, GTSRB, SVHN, ImageNet, Google Speech Command, GLUE, UTKFace
 Models: SENet, ResNet, VGG, Bert

 Evaluation devices: 
 ARM and x86 CPUs

 Baselines:
 Accuracy: Maddness and original models
 Performance: ONNX Runtime and TVM

 Hyper-parameter setting to tradeoff accuracy and cost
 # centroids = 16, vector length = 9 for 3x3 conv, 4 for 1x1 conv, 32 for fully connect
 Accuracy: maintain with the original model, +1.98% (speech command) to -2.42% (ImageNet).



Performance Improvement in All Dimensions

 Evaluation metrics: 
 FLOPs: 5.7x to 16x 
 Model/disk size: 3.4x to 6.8x
 Latency: 1.3x to 6.8x
 Memory: 1.4x to 6.5x 
 Power: 15% to 41.7%   

Latency reduction 
1.3x (ResNet18) ~ 6.8x (Bert)



Summarization
 LUT-NN is a new paradigm for DNN inference 
 It could greatly reduce the cost of DNN deployment
 lutnn (LUT-NN) · GitHub

On-going work
 Applying LUT-NN to large language and diffusion models 
 FPGA implementation for LUT-NN accelerator
 Processing in Memory technique for LUT-NN

Welcome researchers and intern 
students to join our team!

https://github.com/lutnn


Accuracy
 Accuracy difference compared to original models ranges +1.98% (speech 

command) to -2.42% (ImageNet).



Latency

 Latency reduction is 1.3x (ResNet18) ~ 6.8x (Bert).
 Bert uses larger weight matrix for matrix multiplications, and longer vector for LUT-NN. 



Memory and Power

 Memory saving is 1.4x (VGG11) ~ 
6.5x (Bert). 

 Power saving is 12% (SeNET18) ~ 
42% (Bert). 
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