

MilliSign:

mmWave Based Passive Signs for Guiding UAVs in Poor Visibility Conditions

<u>Tatsuya lizuka</u>^{1, 2}, Takuya Sasatani², Toru Nakamura¹, Naoko Kosaka¹, Masaki Hisada¹, Yoshihiro Kawahara²

- 1: NTT Space Environment and Energy Laboratories
- 2: The University of Tokyo

UAVs as Future Infrastructure

Logistics

Environmental monitoring

All-day / all-weather operation is critical.

Signs for Autonomous Flight

Challenges in Poor Visibility Conditions

Challenges in Poor Visibility Conditions

Challenges in Poor Visibility Conditions

Previous Work: mmWave Based Passive Signs

SAR-based reader [1] Synthetic Aperture Radar

Problem 1:

Requires multiple readouts.

Van Atta array (retroreflector) [2]

Problem 2: Read range is limited to 2D plane.

MilliSign: mmWave Based Signs for UAVs

YouTube URL (42 sec ~ 75 sec):

Key Features of MilliSign

Slant range radar readout

-> One-shot readout of dense patterns.

Corner reflector-based RFID tag

-> Wide 3D read range.

Challenge: Compact Tag Size

(i): Tradeoff between tag size and distance

Challenge: Limited Read Range

(i): Tradeoff between tag size and distance

Read Range Design and Encoding Bits

Challenge: Reading Out Dense Patterns

Detected spatial pattern changes with UAV's position

→ Dense bits cause readout error

Off-grid bit detection and accurate tag localization

Experimental Setup

mmWave mounted UAV

MilliSign tag

Readout test using UAV

Evaluation: 3D Range vs. SNR

7.8 times wider coverage than Van-Atta antenna (conventional).

Evaluation: 3D Range vs. Detection Rate

Detection rate exceeding 90% over a wide range (~10m).

Evaluation: Poor Visibility Conditions

Fog

Rain

Fog and rain does not affect MilliSign

Evaluation: Multipath Rich Environment

Our system can distinguish the tag from obstacles.

Evaluation: Multiple Tag Readout

Multiple tags installation

Detected bits

Our system can read out multiple tags simultaneously

Conclusion

We present Millisign, a batteryless and all-weather signage system for guiding UAVs

Our technical contributions are:

- Corner reflector-based chipless RFID tag design that achieves a wide 3D read range.
- Signal processing pipeline for accurately reading the chipless RFID tags.

