DancingAnt: Body-empowered Wireless Sensing Utilizing Pervasive Radiations from Powerline

Minhao Cui*, Binbin Xie*, Qing Wang†, Jie Xiong*

* University of Massachusetts Amherst † Delft University of Technology

University of Massachusetts Amherst

Wireless technologies: from communication to sensing

Various applications

HCI

Disaster rescue

Wireless sensing

Diverse sensing signals

Sound

Light

Practical limitations of wireless sensing

Laboratory

Dedicated devices/signals

Limited Sensing coverage

Affecting original function

Real world

Is there a new sensing modality that can utilize truly ambient signals for sensing without interfering existing communication?

Ambient EM signals leaked from powerlines

Challenges & Solutions

Challenge I: Motion influence on the leaked signal is negligible

Sensing based on Wi-Fi signals (5 GHz)

0.5 cm displacement causes 60 degrees phase change

Sensing based on leaked signals (60 Hz)

0.5 cm displacement causes 3.6×10^{-6} degrees phase change

Our solution: Involving human body into the sensing system

Traditional sensing system

The traditional sensing system with the leaked signals does not work

DancingAnt sensing system

Challenge II: How to infer motion from body-received signals

Body as reflection object

Body as part of RX

Our solution: Body-empowered sensing model

Larger physical size posture larger received signals

Challenge III: Signal information for motion recognition is limited

12

Body motion has no influence on the signal phase

Our solution: Demodulating motion influence from 60 Hz signals

Implementation

The ring antenna is easy to wear and cheap (<\$10)

Evaluation

Sensing body motion

16

DancingAnt can recognize **twelve** motions at **97.7%** accuracy

Sensing coverage

17

DancingAnt provides a larger sensing coverage

Robustness against surrounding interference

DancingAnt is robust against surrounding interference

Interesting case: interferer touches the target

DancingAnt can sense both targets with only one ring

Conclusion

Conclusions

- > Exploited the leaked signals from powerline for sensing.
- > Involved the human body as part of the system to enable a new sensing modality.
- > Built the body-augmented sensing model to guide signal processing.
- ➤ Conducted experiments and demonstrated the proposed systems can be utilized for sensing without any dedicated sensing signal.

THANKS FOR LISTENING!