The Case for UHF–Band MU–MIMO

Naren Anand
Ryan E. Guerra
Dr. Edward W. Knightly
MobiCom 2014
Introduction

The Case for UHF-Band MU-MIMO
Introduction

The Case for UHF Band MU-MIMO

2.4GHz
5.8GHz
Introduction

The Case for UHF - Band MU-MIMO

2.4GHz

5.8GHz
Introduction

TVWS are “beachfront property” of the RF Spectrum
– FCC 2010

Oneloa Bay, Maui
Introduction

The Case for UHF - Band MU-MIMO

TVWS are “beachfront property” of the RF Spectrum
– FCC 2010

Oneloa Bay, Maui
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

\[\frac{P_r}{P_t} = G_b G_r \left(\frac{\lambda}{4\pi D} \right)^2 \]
Introduction

TVWS are “beachfront property” of the RF Spectrum
– FCC 2010

\[\frac{P_r}{P_t} = G_t G_r \left(\frac{\lambda}{4\pi D} \right)^2 \]
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Oneloa Bay, Maui
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Oneloa Bay, Maui
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Oneloa Bay, Maui

Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Oneloa Bay, Maui

Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Oneloa Bay, Maui
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Oneloa Bay, Maui
The Case for UHF - Band MU-MIMO

TVWS are “beachfront property” of the RF Spectrum – FCC 2010
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010
Introduction

The Case for UHF - Band MU-MIMO

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

Houston – 6 MHz

Oneloa Bay, Maui
Introduction

TVWS are “beachfront property” of the RF Spectrum – FCC 2010

UHF
- Better Propagation
- Limited Spectrum

Houston – 6 MHz

Oneloa Bay, Maui
MU-MIMO: Precoding technique that enables multi-antenna devices to transmit parallel streams.
MU-MIMO: Precoding technique that enables multi-antenna devices to transmit parallel streams

Properties of the UHF band uniquely benefit MU-MIMO transmissions while providing their own challenges

Channel Variability

Receiver Separability
MU-MIMO: Precoding technique that enables multi-antenna devices to transmit parallel streams

Properties of the UHF band uniquely benefit MU-MIMO transmissions while providing their own challenges.

We demonstrate that UHF combined with MU-MIMO can compensate for these challenges and overcome the spectral limitations of the UHF band.
MU-MIMO Background

Testbed Design and Integration

OTA Measurements and Analysis
Outline

MU-MIMO Background

Testbed Design and Integration

OTA Measurements and Analysis

The Case for UHF-Band MU-MIMO
MU-MIMO Background

- MU-MIMO: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients.
MU-MIMO Background

- **MU-MIMO**: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients.
 - Precoding: Applying complex magnitude and phase offsets (steering weights) to each data stream through the transmitting antenna array.

![Diagram of MU-MIMO transmission](image-url)
MU-MIMO Background

- **MU-MIMO**: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients
 - Precoding: Applying complex magnitude and phase offsets (steering weights) to each data stream through the transmitting antenna array

\[
Tx_{1:4} = \sum_{x \in \{A, B, C\}} w_{x_{1:4}} \cdot D_x
\]
MU-MIMO Background

- **MU-MIMO**: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients
 - Precoding: Applying complex magnitude and phase offsets (steering weights) to each data stream through the transmitting antenna array

- Steering Weights: W matrix computation based on measured magnitude and phase offsets for each Tx-Rx antenna path (CSI Matrix)
• MU-MIMO: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients
 • Precoding: Applying complex magnitude and phase offsets (steering weights) to each data stream through the transmitting antenna array

\[
Tx_{1:4} = \sum_{x \in \{A, B, C\}} w_{x_{1:4}} \cdot D_x
\]

• Steering Weights: W matrix computation based on measured magnitude and phase offsets for each Tx->Rx antenna path (CSI Matrix)

\[
H = \begin{bmatrix}
h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix}
\]
MU-MIMO Background

- **MU-MIMO**: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients
 - Precoding: Applying complex magnitude and phase offsets (steering weights) to each data stream through the transmitting antenna array

- Steering Weights: W matrix computation based on measured magnitude and phase offsets for each Tx-Rx antenna path (CSI Matrix)
 - e.g., Zero-forcing Beamforming

$$H = \begin{bmatrix} h_{a1} & h_{a2} & h_{a3} & h_{a4} \\ h_{b1} & h_{b2} & h_{b3} & h_{b4} \\ h_{c1} & h_{c2} & h_{c3} & h_{c4} \end{bmatrix}$$

$$W = H^*(HH^*)^{-1}$$

$$T_{x1:4} = \sum_{x\in\{A,B,C\}} w_{x1:4} \cdot D_x$$
MU-MIMO Background

• MU-MIMO: linear precoding method that allows a multi-antenna AP to transmit multiple parallel data streams to groups of clients
 • Precoding: Applying complex magnitude and phase offsets (steering weights) to each data stream through the transmitting antenna array
 • Steering Weights: W matrix computation based on measured magnitude and phase offsets for each Tx-Rx antenna path (CSI Matrix)
 • e.g., Zero-forcing Beamforming

\[H = \begin{bmatrix} h_{a1} & h_{a2} & h_{a3} & h_{a4} \\ h_{b1} & h_{b2} & h_{b3} & h_{b4} \\ h_{c1} & h_{c2} & h_{c3} & h_{c4} \end{bmatrix} \]

\[W = H^*(HH^*)^{-1} = \begin{bmatrix} w_{a1} & w_{b1} & w_{c1} \\ w_{a2} & w_{b2} & w_{c2} \\ w_{a3} & w_{b3} & w_{c3} \\ w_{a4} & w_{b4} & w_{c4} \end{bmatrix} \]
• Two step process:
• **Two step process:**

 • **SOUND**
 – Measure channel between Tx and Rx antennas
MU-MIMO Tx Procedure

• **Two step process:**
 • **SOUND** – Measure channel between Tx and Rx antennas
 • **TRANSMIT** – Transmit parallel streams to multiple users

![Diagram showing TX and RX connections](image)
Two Key Performance-Determining Factors
Two Key Performance-Determining Factors

Receiver Separability
MU-MIMO Performance

Two Key Performance-Determining Factors

Receiver Separability

Channel Variability
Receiver Separability

Rx A

Rx B

Rx C

9/8/2014

The Case for UHF-Band MU-MIMO
Receiver Separability

• How close are the users’ channels?
Receiver Separability

• How close are the users’ channels?
 • Linear dependence of H matrix rows

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]
Receiver Separability

- How close are the users’ channels?
 - Linear dependence of H matrix rows

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]
Receiver Separability

- **How close are the users’ channels?**
 - Linear dependence of H matrix rows

$$H = \begin{bmatrix} h_{a1} & h_{a2} & h_{a3} & h_{a4} \\ h_{b1} & h_{b2} & h_{b3} & h_{b4} \\ h_{c1} & h_{c2} & h_{c3} & h_{c4} \end{bmatrix}$$

- How close are the users’ channels?
- Linear dependence of H matrix rows
• **How close are the users’ channels?**
 • Linear dependence of H matrix rows
 • **NOT** necessarily dependent on physical location

\[H = \begin{bmatrix} h_{a1} & h_{a2} & h_{a3} & h_{a4} \\ h_{b1} & h_{b2} & h_{b3} & h_{b4} \\ h_{c1} & h_{c2} & h_{c3} & h_{c4} \end{bmatrix} \]
Receiver Separability

• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • **NOT** necessarily dependent on physical location

$$H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix}$$
Receiver Separability

- **How close are the users’ channels?**
 - Linear dependence of H matrix rows
 - **NOT** necessarily dependent on physical location

\[
H = \begin{bmatrix}
h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix}
\]
Receiver Separability

• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • NOT necessarily dependent on physical location

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

2.4 GHz
5.8 GHz
• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • NOT necessarily dependent on physical location

Receiver Separability

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

2.4 GHz
5.8 GHz

UHF?

Tx

Rx A

Rx B

Rx C

The Case for UHF-Band MU-MIMO
• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • **NOT** necessarily dependent on physical location

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]
• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • **NOT** necessarily dependent on physical location

\[
H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix}
\]
• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • NOT necessarily dependent on physical location

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

How to Quantify?
Receiver Separability

- How close are the users’ channels?
 - Linear dependence of H matrix rows
 - NOT necessarily dependent on physical location

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

2.4 GHz

5.8 GHz

UHF?

How to Quantify?
- Demmel Condition Number
Receiver Separability

- **How close are the users’ channels?**
 - Linear dependence of H matrix rows
 - **NOT** necessarily dependent on physical location

How to Quantify?

- Demmel Condition Number

\[
H = \begin{bmatrix}
h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix}
\]

let \(\lambda_1, \lambda_2, \ldots, \lambda_n = \text{eig}(HH^*) \)

s.t. \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \)

\[
d \triangleq \frac{\sum_{k=1}^{n} \lambda_k}{\lambda_n}
\]

- 2.4 GHz
- 5.8 GHz
- UHF?
Receiver Separability

- How close are the users’ channels?
 - Linear dependence of H matrix rows
 - **NOT** necessarily dependent on physical location

$$H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix}$$

2.4 GHz
5.8 GHz
UHF?

How to Quantify?

- Demmel Condition Number
 - Based on Linear dependence

let $\lambda_1, \lambda_2, \ldots, \lambda_n = \text{eig}(HH^*)$

\[
d \triangleq \sum_{k=1}^{n} \frac{\lambda_k}{\lambda_n}
\]
Receiver Separability

• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • **NOT** necessarily dependent on physical location

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

2.4 GHz
5.8 GHz
UHF?

The Case for UHF-Band MU-MIMO

How to Quantify?

• Demmel Condition Number
 • \[[35] \text{ C. Zhong, et. al. 2011} \]
 • Based on Linear dependence
 • Thus, invertibility

\[\text{let } \lambda_1, \lambda_2, \ldots, \lambda_n = \text{eig}(HH^*) \]
\[\text{s.t. } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \]
\[d \triangleq \frac{\sum_{k=1}^{n} \lambda_k}{\lambda_n} \]
Receiver Separability

• How close are the users’ channels?
 • Linear dependence of H matrix rows
 • NOT necessarily dependent on physical location

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

How to Quantify?

• Demmel Condition Number
 • Based on Linear dependence
 • Thus, invertibility
 • Reliably predicts performance
 • eg., use for MCS

How close are the users’ channels? How to Quantify?
Receiver Separability

- **How close are the users' channels?**
 - Linear dependence of H matrix rows
 - **NOT** necessarily dependent on physical location

2.4 GHz

5.8 GHz

UHF?

\[H = \begin{bmatrix}
 h_{a1} & h_{a2} & h_{a3} & h_{a4} \\
 h_{b1} & h_{b2} & h_{b3} & h_{b4} \\
 h_{c1} & h_{c2} & h_{c3} & h_{c4}
\end{bmatrix} \]

How to Quantify?

- **Demmel Condition Number**
 - Based on Linear dependence
 - Thus, invertibility
 - Reliably predicts performance
 - e.g., use for MCS
 - \([1, \infty) : 1 \rightarrow \) perfectly separable (orthogonal) channels

\[\text{let } \lambda_1, \lambda_2, \ldots, \lambda_n = \text{eig}(HH^*) \]
\[\text{s.t. } \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \]
\[d \triangleq \frac{\sum_{k=1}^{n} \lambda_k}{\lambda_n} \]
Channel Variability

The Case for UHF-Band MU-MIMO
Channel Variability

• How much do the users (or their environments) move?
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING**

Diagram:
- Tx to Rx A
- Tx to Rx B
- Tx to Rx C
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
Channel Variability

• How much do the users (or their environments) move?
 • Between **SOUNDING** and **TRANSMISSION**
 • How “fast” is the user/environment changing?

\[\text{m/s} \]
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

- **Rx A**: 13 m/s
- **Rx B**: 1.5 m/s
- **Rx C**: 4.5 m/s
Channel Variability

• How much do the users (or their environments) move?
 • Between **SOUNDING** and **TRANSMISSION**
 • How “fast” is the user/environment changing?

- Rx A: 13m/s
- Rx B: 1.5m/s
- Rx C: 4.5m/s

9/8/2014 The Case for UHF-Band MU-MIMO
Channel Variability

• How much do the users (or their environments) move?
 • Between SOUNDED and TRANSMISSION
 • How “fast” is the user/environment changing?

<table>
<thead>
<tr>
<th>Rx A</th>
<th>Rx B</th>
<th>Rx C</th>
</tr>
</thead>
<tbody>
<tr>
<td>13m/s</td>
<td>1.5m/s</td>
<td>4.5m/s</td>
</tr>
</tbody>
</table>

9/8/2014 The Case for UHF-Band MU-MIMO

<table>
<thead>
<tr>
<th>UHF</th>
<th>2.4 GHz</th>
<th>5.8 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

<table>
<thead>
<tr>
<th>λ</th>
<th>UHF</th>
<th>2.4 GHz</th>
<th>5.8 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ/s</td>
<td>60cm</td>
<td>12cm</td>
<td>5cm</td>
</tr>
</tbody>
</table>

9/8/2014

The Case for UHF-Band MU-MIMO
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
</tr>
</tbody>
</table>
Channel Variability

• How much do the users (or their environments) move?
 • Between SOUN Dell g and TRANSMISSION
 • How “fast” is the user/environment changing?

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>X</th>
<th>m/s</th>
<th>λ/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td></td>
<td>λ/s</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tx

Rx A 13m/s
Rx B 1.5m/s
Rx C 4.5m/s

9/8/2014

The Case for UHF-Band MU-MIMO
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

<table>
<thead>
<tr>
<th>λ</th>
<th>x</th>
<th>人</th>
<th>自行车</th>
<th>车</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td>30</td>
<td>90</td>
</tr>
</tbody>
</table>
Channel Variability

• How much do the users (or their environments) move?
 • Between **SOUNDING** and **TRANSMISSION**
 • How “fast” is the user/environment changing?

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>X</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
<td>21</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td>13</td>
<td>38</td>
<td>108</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td>30</td>
<td>90</td>
<td>260</td>
</tr>
</tbody>
</table>

9/8/2014
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

How to Quantify?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>(\lambda) (cm)</th>
<th>(\chi)</th>
<th>User Speed</th>
<th>Device Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5</td>
<td>12</td>
<td>30</td>
<td>90</td>
</tr>
</tbody>
</table>

\(\lambda \) is the wavelength, \(\chi \) is a factor related to the environment, and the table shows the speed in m/s and \(\lambda/s \) for different scenarios.

The Case for UHF-Band MU-MIMO
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

How to Quantify
- elem(H) autocorrelation

$$\rho_\ell = \frac{\mathbb{E}[H_{mn}[k]H^*_{mn}[k+\ell]]}{\mathbb{E}[H_{mn}[k]H^*_{mn}[k]]}$$

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>χ</th>
<th>ℓ</th>
<th>ρ_ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td>30</td>
</tr>
</tbody>
</table>

9/8/2014
Channel Variability

• How much do the users (or their environments) move?
 • Between **SOUNDING** and **TRANSMISSION**
 • How "fast" is the user/environment changing?

How to Quantify:
• elem(H) autocorrelation

\[\rho_\ell = \frac{\mathbb{E}[H_{mn}[k]H^*_{mn}[k + \ell]]}{\mathbb{E}[H_{mn}[k]H^*_{mn}[k]]}\]

• Measures change of each antenna path

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>x</th>
<th>2.5</th>
<th>7.5</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
<td>21</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td>13</td>
<td>38</td>
<td>108</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td>30</td>
<td>90</td>
<td>260</td>
</tr>
</tbody>
</table>
Channel Variability

- How much do the users (or their environments) move?
 - Between **SOUNDING** and **TRANSMISSION**
 - How “fast” is the user/environment changing?

How to Quantify
- elem(H) autocorrelation
 - Measures change of each antenna path
 - $[0,1]: 1$-> identical for given lag

<table>
<thead>
<tr>
<th></th>
<th>λ</th>
<th>χ</th>
<th>2.5</th>
<th>7.5</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
<td>21</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td>13</td>
<td>38</td>
<td>108</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td>30</td>
<td>90</td>
<td>260</td>
</tr>
</tbody>
</table>

9/8/2014
Channel Variability

• How much do the users (or their environments) move?
 • Between **SOUNDING** and **TRANSMISSION**
 • How “fast” is the user/environment changing?

How to Quantify

• \(\text{elem(H)} \) autocorrelation

\[
\rho_\ell = \frac{\mathbb{E}[H_{mn}[k]H_{mn}^*[k + \ell]]}{\mathbb{E}[H_{mn}[k]H_{mn}^*[k]]}
\]

• Measures change of each antenna path
• \([0,1] : 1-> \text{identical for given lag}\)
• Rate of decay w.r.t. lag:
 • Slow decay, sound less
 • Fast Decay, sound more

<table>
<thead>
<tr>
<th></th>
<th>(\lambda)</th>
<th>(\chi)</th>
<th>(\text{m/s})</th>
<th>(\lambda/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>60cm</td>
<td>x</td>
<td>2.5</td>
<td>7.5</td>
</tr>
<tr>
<td>2.4 GHz</td>
<td>12cm</td>
<td>5x</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>5.8 GHz</td>
<td>5cm</td>
<td>12x</td>
<td>30</td>
<td>90</td>
</tr>
</tbody>
</table>

9/8/2014
MU-MIMO: UHF vs 2.4/5GHz

MU-MIMO

Channel Models

OTA Characterization
MU-MIMO: UHF vs 2.4/5GHz

Channel Models

- 5.8 GHz Indoor
 [27] Poutanen 2011

- 300 MHz Outdoor
 [36] Zhu 2013

OTA Characterization

Channel Variability

Receiver Separability
MU-MIMO: UHF vs 2.4/5GHz

Channel Models

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Indoor</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8 GHz</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>300 MHz</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

OTA Characterization

- 300 MHz Outdoor: [36] Zhu 2013
- 5.8 GHz Indoor: [27] Poutanen 2011

Receiver Separability

- ?
- ?
- ?
- ?

The Case for UHF-Band MU-MIMO
• COST 2100 -> MU-MIMO modelling framework
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements
• COST 2100 -> MU-MIMO modelling framework
• Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements
• COST 2100 -> MU-MIMO modelling framework
• Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements

• Models tell us:
 • UHF MU-MIMO users are harder to separate than 5GHz
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements

• Models tell us:
 • UHF MU-MIMO users are harder to separate than 5GHz
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements

Models tell us:
- UHF MU-MIMO users are harder to separate than 5GHz
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements

• Models tell us:
 • UHF MU-MIMO users are harder to separate than 5GHz
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements

- Models tell us:
 - UHF MU-MIMO users are harder to separate than 5GHz
 - UHF MU-MIMO channels are less variable than 5GHz
MU-MIMO Channel Models

- COST 2100 -> MU-MIMO modelling framework
- Parameterized for 300 MHz outdoor and 5 GHz indoor through exhaustive OTA measurements

Models tell us:
- UHF MU-MIMO users are harder to separate than 5GHz
- UHF MU-MIMO channels are less variable than 5GHz

Order of magnitude
MU-MIMO: UHF vs 2.4/5GHz

Channel Models

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Indoor/Outdoor</th>
<th>Channel Variability</th>
<th>Receiver Separability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8 GHz</td>
<td>Indoor</td>
<td>More Variable</td>
<td>Easier to Separate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300 MHz</td>
<td>Outdoor</td>
<td>Less Variable</td>
<td>Harder to Separate</td>
</tr>
</tbody>
</table>

- **5.8 GHz Indoor**: [Poutanen 2011](#)
- **300 MHz Outdoor**: [Zhu 2013](#)
MU-MIMO: UHF vs 2.4/5GHz

MU-MIMO Channel Models

- **5.8 GHz** Indoor
 - [27] Poutanen 2011
 - More Variable
 - Easier to Separate

- **300 MHz** Outdoor
 - [36] Zhu 2013
 - Less Variable
 - Harder to Separate

OTA Characterization

The Case for UHF-Band MU-MIMO
MU-MIMO: UHF vs 2.4/5GHz

<table>
<thead>
<tr>
<th>Channel Models</th>
<th>Channel Variability</th>
<th>Receiver Separability</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8 GHz Indoor</td>
<td>More Variable</td>
<td>Easier to Separate</td>
</tr>
<tr>
<td>300 MHz Outdoor</td>
<td>Less Variable</td>
<td>Harder to Separate</td>
</tr>
<tr>
<td>2.4/5.8 GHz Indoor</td>
<td>More Variable</td>
<td>Easier to Separate</td>
</tr>
</tbody>
</table>

- **Channel Models**
 - **5.8 GHz Indoor**
 - More Variable
 - Easier to Separate
 - **300 MHz Outdoor**
 - Less Variable
 - Harder to Separate
 - **2.4/5.8 GHz Indoor**
 - More Variable
 - Easier to Separate

- **OTA Characterization**
 - **300 MHz Outdoor**
 - Less Variable
 - Harder to Separate
 - **2.4/5.8 GHz Indoor**
 - More Variable
 - Easier to Separate

References:
- [27] Poutanen 2011
- [36] Zhu 2013
- [9] Aryafar 2010
MU-MIMO: UHF vs 2.4/5GHz

<table>
<thead>
<tr>
<th>MU-MIMO</th>
<th>Channel Models</th>
<th>OTA Characterization</th>
<th>Channel Variability</th>
<th>Receiver Separability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.8 GHz Indoor [27] Poutanen 2011</td>
<td>2.4/5.8 GHz Indoor [9] Aryafar 2010</td>
<td>More Variable</td>
<td>Easier to Separate</td>
</tr>
<tr>
<td></td>
<td>300 MHz Outdoor [36] Zhu 2013</td>
<td>UHF In/Outdoor</td>
<td>Less Variable</td>
<td>Harder to Separate</td>
</tr>
</tbody>
</table>

- More Variable: Easier to Separate
- Less Variable: Harder to Separate
MU-MIMO: UHF vs 2.4/5GHz

Channel Models
- **5.8 GHz Indoor**
 - [27] Poutanen 2011
 - More Variable
 - Easier to Separate
- **300 MHz Outdoor**
 - [36] Zhu 2013
 - Less Variable
 - Harder to Separate

OTA Characterization
- **2.4/5.8 GHz Indoor**
 - [9] Aryafar 2010
 - More Variable
 - Easier to Separate
- **UHF In/Outdoor**
 - [*] Anand 2014
 - ?
 - ?
Outline

- MU-MIMO Background
- Testbed Design and Integration
- OTA Measurements and Analysis
Outline

MU-MIMO Background

Testbed Design and Integration

OTA Measurements and Analysis
How do you build a UHF MU-MIMO array?
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments

Log-periodic

35cm

40cm
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments

Log-periodic

Sector

100cm

50cm

35cm

40cm
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments.
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments

Enterprise AP and WARP SDR
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments.
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome - especially for indoor deployments.

- **Sector**: 185cm x 100cm x 50cm
- **Enterprise AP and WARP SDR**: 40cm x 35cm x 12cm
- **Log-periodic**: λ/2 = 30cm
- **Enterprise AP and WARP SDR**: 25cm x 12cm x 100cm
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments.

- **Log-periodic**: 35 cm
- **Enterprise AP and WARP SDR**: 25 cm
- **Sector**: 100 cm
- **H**: 45 cm
- **λ/2**: 30 cm
- **40 cm**
- **12 cm**
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome \(\rightarrow \) especially for indoor deployments.

Log-periodic

Sector
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments
How do you build a UHF MU-MIMO array?

Common UHF Antennas are cumbersome -> especially for indoor deployments

UHF array achieves MU-MIMO gains even with SFF antennas -> Indoor WLAN sized
WURC Array

- Open UHF MU-MIMO development platform
WURC Array

- Open UHF MU-MIMO development platform
- Side by side comparisons of 2.4/5Ghz and UHF band
WURC Array

- Open UHF MU-MIMO development platform
- Side by side comparisons of 2.4/5GHz and UHF band

$\lambda/2=30\text{cm}$

UHF Antenna
WURC Array

- Open UHF MU-MIMO development platform
- Side by side comparisons of 2.4/5Ghz and UHF band
WURC Array

- Open UHF MU-MIMO development platform
- Side by side comparisons of 2.4/5Ghz and UHF band
- 4 WARP + 4 WURC

λ/2 = 6 cm

λ/2 = 30 cm
WURC Array

- Open UHF MU-MIMO development platform
- Side by side comparisons of 2.4/5Ghz and UHF band
- 4 WARP + 4 WURC
- Clock and trigger sync. - > coherent transmitter
Open

High Power
Open

Frequency-Agile

High Power
The Case for UHF Band MU-MIMO
The Case for UHF Band MU-MIMO
High power, Multi-band radio front end

The Case for UHF-Band MU-MIMO
• High power, Multi-band radio front end
 • Custom design - built with LMS6002D
High power, Multi-band radio front end
- Custom design - built with LMS6002D
- Up to 1 Watt Tx power with custom PA chain
High power, Multi-band radio front end

- Custom design - built with LMS6002D
- Up to **1 Watt Tx power** with custom PA chain
- Demo: An Open-Source Development Platform for Long-Range UHF-Connected WiFi Hotspots
MU-MIMO
Background

Testbed Design and Integration

OTA Measurements and Analysis
• Exhaustively characterize the channel
• Exhaustively characterize the channel
• Zero-forcing Beamformer
• Exhaustively characterize the channel
• Zero-forcing Beamformer
 • Based on WARPLab design flow
OTA Measurement Methodology

- Exhaustively characterize the channel
- Zero-forcing Beamformer
 - Based on WARPLab design flow
 - MATLAB Centric PHY layer prototyping platform
• Exhaustively characterize the channel
• **Zero-forcing Beamformer**
 • Based on WARPLab design flow
 • MATLAB Centric PHY layer prototyping platform
 • Allows for less complex implementation of Zero-forcer
 • measure SINR -> Aggregate Shannon Capacity
OTA Measurement Methodology

- Exhaustively characterize the channel
- Zero-forcing Beamformer
 - Based on WARPLab design flow
 - MATLAB Centric PHY layer prototyping platform
 - Allows for less complex implementation of Zero-forcer
 - measure SINR -> Aggregate Shannon Capacity
 - High communication latency.

\[
C = \sum_{x \in \text{Rx}} \log_2(1 + \text{SINR}_x)
\]
OTA Measurement Methodology

• Exhaustively characterize the channel

• Zero-forcing Beamformer
 • Based on WARPLab design flow
 • MATLAB Centric PHY layer prototyping platform
 • Allows for less complex implementation of Zero-forcer
 • measure SINR -> Aggregate Shannon Capacity

• High communication latency.
• Topology restricted by cabling.

\[C = \sum_{x \in R_x} \log_2(1 + \text{SINR}_x) \]
OTA Measurement Methodology

- **Exhaustively characterize the channel**
- **Zero-forcing Beamformer**
 - Based on WARPLab design flow
 - MATLAB Centric PHY layer prototyping platform
 - Allows for less complex implementation of Zero-forcer
 - measure SINR -> Aggregate Shannon Capacity
 - High communication latency.
 - Topology restricted by cabling.

- **High speed WARP-based channel sounder**

\[C = \sum_{x \in R_x} \log_2(1 + \text{SINR}_x) \]
OTA Measurement Methodology

• Exhaustively characterize the channel

• Zero-forcing Beamformer
 • Based on WARPLab design flow
 • MATLAB Centric PHY layer prototyping platform
 • Allows for less complex implementation of Zero-forcer
 • measure SINR -> Aggregate Shannon Capacity
 • High communication latency.
 • Topology restricted by cabling.

• High speed WARP-based channel sounder
 • Based on WARP-802.11 Reference Design

\[C = \sum_{x \in Rx} \log_2 (1 + \text{SINR}_x) \]
OTA Measurement Methodology

- Exhaustively characterize the channel
- Zero-forcing Beamformer
 - Based on WARPLab design flow
 - MATLAB Centric PHY layer prototyping platform
 - Allows for less complex implementation of Zero-forcer
 - measure SINR -> Aggregate Shannon Capacity
 - High communication latency.
 - Topology restricted by cabling.

High speed WARP-based channel sounder
- Based on WARP-802.11 Reference Design
 - Allows for MU-MIMO channel sounding
 with a relatively low cost set of SDRs

\[C = \sum_{x \in R_x} \log_2(1 + \text{SINR}_x) \]
OTA Measurement Methodology

• Exhaustively characterize the channel

• Zero-forcing Beamformer
 • Based on WARPLab design flow
 • MATLAB Centric PHY layer prototyping platform
 • Allows for less complex implementation of Zero-forcer
 • measure SINR -> Aggregate Shannon Capacity
 • High communication latency.
 • Topology restricted by cabling.

• High speed WARP-based channel sounder
 • Based on WARP-802.11 Reference Design
 • Allows for MU-MIMO channel sounding
 with a relatively low cost set of SDRs
 • LTS for OFDM channel estimation

\[C = \sum_{x \in R_x} \log_2(1 + \text{SINR}_x) \]
OTA Measurement Methodology

• **Exhaustively characterize the channel**
• **Zero-forcing Beamformer**
 • Based on WARPLab design flow
 • MATLAB Centric PHY layer prototyping platform
 • Allows for less complex implementation of Zero-forcer
 • measure SINR -> Aggregate Shannon Capacity
 • High communication latency.
 • Topology restricted by cabling.

• **High speed WARP-based channel sounder**
 • Based on WARP-802.11 Reference Design
 • Allows for MU-MIMO channel sounding with a relatively low cost set of SDRs
 • LTS for OFDM channel estimation
 • Provides high speed channel snapshots
 • not actual beamforming

\[C = \sum_{x \in Rx} \log_2(1 + \text{SINR}_x) \]
Indoor Scenario

• Typical, challenging Indoor Environment

3rd Floor (open area) 3m

3rd Floor

3m
• Typical, challenging Indoor Environment
 • Environmental mobility from office
Indoor Scenario

- **Typical, challenging Indoor Environment**
 - Environmental mobility from office
 - Industrial building: Concrete and steel propagation environment

![Diagram of indoor scenario with 3rd floor (open area) and concrete]
Indoor Scenario

• Typical, challenging Indoor Environment
 • Environmental mobility from office
 • Industrial building: Concrete and steel propagation environment
 • Non-Line of Sight

3rd Floor (open area)

Concrete

Walkway

3rd Floor

3m

9/8/2014
Indoor Scenario

• Typical, challenging Indoor Environment
 • Environmental mobility from office
 • Industrial building: Concrete and steel propagation environment
 • Non-Line of Sight
 • Close colocation of receivers
Indoor Scenario

• Typical, challenging Indoor Environment
 • Environmental mobility from office
 • Industrial building: Concrete and steel propagation environment
 • Non-Line of Sight
 • Close colocation of receivers

• **Will UHF propagation allow for user separation?**
Indoor Scenario

- Typical, challenging Indoor Environment
 - Environmental mobility from office
 - Industrial building: Concrete and steel propagation environment
 - Non-Line of Sight
 - Close colocation of receivers

- Will UHF propagation allow for user separation?
- Does the UHF MU-MIMO channel actually stay stable?
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010

2.4GHz

- Sum capacity peaks at 4x3
- Num Tx = 4
- Capacity (b/s/Hz)
- Num Rx

2.4GHz
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010
- Propagation of 5.8 GHz diminishes performance
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010
- Propagation of 5.8 GHz diminishes performance
- Recall UHF user separability
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010
- Propagation of 5.8 GHz diminishes performance
- Recall UHF user separability
 - Propagation through obstacles should reduce multi-path

![Graph showing capacity vs. number of receive antennas for 2.4GHz and 5.8GHz bands.]

Num Tx = 4
Indoor Scenario

• Sum capacity peaks at 4x3
 • [9] Aryafar 2010
• Propagation of 5.8 GHz diminishes performance
• Recall UHF user separability
 • Propagation through obstacles should reduce multi-path

<table>
<thead>
<tr>
<th>Num Rx</th>
<th>Capacity (b/s/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Num Tx = 4

- UHF
- 2.4GHz
- 5.8GHz
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010
- Propagation of 5.8 GHz diminishes performance
- Recall UHF user separability
 - Propagation through obstacles should reduce multi-path
- *Equivalent capacity to 2.4GHz*
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010
- Propagation of 5.8 GHz diminishes performance
- Recall UHF user separability
 - Propagation through obstacles should reduce multi-path
- Equivalent capacity to 2.4GHz
- Increasing Tx Distance would show larger performance gain over 2.4GHz
Indoor Scenario

- Sum capacity peaks at 4x3
 - [9] Aryafar 2010
- Propagation of 5.8 GHz diminishes performance
- Recall UHF user separability
 - Propagation through obstacles should reduce multi-path
- Equivalent capacity to 2.4GHz
- Increasing Tx Distance would show larger performance gain over 2.4GHz

No spectral efficiency penalty for lower frequency
Will UHF propagation allow for user separation?
Indoor Scenario

- **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number
Indoor Scenario

- **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number
Indoor Scenario

- **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number

![CDF of Measured Indoor Demmel Condition Number](image)

2.4GHz **5.8GHz**
Indoor Scenario

Will UHF propagation allow for user separation?

- Previous capacity results confirm
- Verify with Condition Number

![Graph showing CDF of Measured Indoor Demmel Condition Number for UHF, 2.4GHz, and 5.8GHz bands.](image)
Indoor Scenario

• **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number
 - Similar H matrix conditioning yields similar capacity

![Graph showing measured indoor Demmel condition number for UHF, 2.4GHz, and 5.8GHz frequencies.](image)
Indoor Scenario

- **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number
 - Similar H matrix conditioning yields similar capacity

![Graph showing CDF of measured indoor Demmel Condition Number for UHF, 2.4GHz, and 5.8GHz bands.](image)
Indoor Scenario

- **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number
 - Similar H matrix conditioning yields similar capacity

- Models: **Indoor** 5.8 GHz and **Outdoor** UHF
Indoor Scenario

- **Will UHF propagation allow for user separation?**
 - Previous capacity results confirm
 - Verify with Condition Number
 - Similar H matrix conditioning yields similar capacity

- Models: **Indoor** 5.8 GHz and **Outdoor** UHF

User separability is Environment Dependent, not band dependent
Indoor Scenario

- Does the UHF MU-MIMO channel actually stay stable?
Indoor Scenario

• **Does the UHF MU-MIMO channel actually stay stable?**
 • Successful BF confirms
 • Atleast for WARPLab latency
Indoor Scenario

- **Does the UHF MU-MIMO channel actually stay stable?**
 - Successful BF confirms
 - Atleast for WARPLab latency
 - Verify with Temporal Correlation
Indoor Scenario

Does the UHF MU-MIMO channel actually stay stable?

- Successful BF confirms
 - Atleast for WARPLab latency
- Verify with Temporal Correlation

![Measured Indoor Temporal Correlation]

- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Correlation Coefficient

Time (s)
Indoor Scenario

• **Does the UHF MU-MIMO channel actually stay stable?**
 • Successful BF confirms
 • Atleast for WARPLab latency
 • Verify with Temporal Correlation

![Measured Indoor Temporal Correlation](image)
Indoor Scenario

Does the UHF MU-MIMO channel actually stay stable?

- Successful BF confirms
 - Atleast for WARPLab latency
- Verify with Temporal Correlation

Measured Indoor Temporal Correlation

Correlation Coefficient vs Time (s)

2.4GHz, 5.8GHz
Indoor Scenario

- **Does the UHF MU-MIMO channel actually stay stable?**
 - Successful BF confirms
 - Atleast for WARPLab latency
 - Verify with Temporal Correlation

![Measured Indoor Temporal Correlation](chart.png)

- **UHF**
- **2.4GHz**
- **5.8GHz**
Indoor Scenario

- **Does the UHF MU-MIMO channel actually stay stable?**
 - Successful BF confirms
 - Atleast for WARPLab latency
 - Verify with Temporal Correlation
 - UHF: low channel variability even at 802.11 Beacon Interval
Indoor Scenario

• **Does the UHF MU-MIMO channel actually stay stable?**
 - Successful BF confirms
 - Atleast for WARPLab latency
 - Verify with Temporal Correlation
 - UHF: low channel variability even at *802.11 Beacon Interval*

![Temporal Correlation Graph](image-url)

![UHF, 2.4GHz, 5.8GHz Correlation Coefficient vs Time](image-url)
Indoor Scenario

- **Does the UHF MU-MIMO channel actually stay stable?**
 - Successful BF confirms
 - Atleast for WARPLab latency
 - Verify with Temporal Correlation
 - UHF: low channel variability even at *802.11 Beacon Interval*

- Models: **Indoor** 5.8 GHz and **Outdoor** UHF
Indoor Scenario

• **Does the UHF MU-MIMO channel actually stay stable?**
 - Successful BF confirms
 - Atleast for WARPLab latency
 - Verify with Temporal Correlation
 - UHF: low channel variability even at *[802.11 Beacon Interval]*

 ![Temporal Correlation](chart)

- Models: **Indoor** 5.8 GHz and **Outdoor** UHF

Channel variability is band dependent
Indoor Scenario

- **Relevance of MU-MIMO channel stability for protocol design**
Indoor Scenario

- **Relevance of MU-MIMO channel stability for protocol design**
 - MU-MIMO provides spectral efficiency
Indoor Scenario

- **Relevance of MU-MIMO channel stability for protocol design**
 - MU-MIMO provides spectral efficiency
 - Setup/overhead for transmission?
Indoor Scenario

Relevance of MU-MIMO channel stability for protocol design

- MU-MIMO provides spectral efficiency
- Setup/overhead for transmission?
Indoor Scenario

- **Relevance of MU-MIMO channel stability for protocol design**
 - MU-MIMO provides spectral efficiency
 - Setup/overhead for transmission?

![Diagram showing transmission and reception signals with time intervals]
Indoor Scenario

- **Relevance of MU-MIMO channel stability for protocol design**
 - MU-MIMO provides spectral efficiency
 - Setup/overhead for transmission?

![Diagram](image_url)

SOUND
(500us)
• **Relevance of MU-MIMO channel stability for protocol design**
 - MU-MIMO provides spectral efficiency
 - Setup/overhead for transmission?
Indoor Scenario

Relevance of MU-MIMO channel stability for protocol design

- MU-MIMO provides spectral efficiency
- Setup/overhead for transmission?

- Less channel variability -> *less per packet sounding*
Indoor Scenario

- **Relevance of MU-MIMO channel stability for protocol design**
 - MU-MIMO provides spectral efficiency
 - Setup/overhead for transmission?

- **UHF allows for the gains of MU-MIMO with significantly less protocol overhead**

- Less channel variability -> *less per packet sounding*
Conclusion

• Design open UHF-MU-MIMO platform for side-by-side comparisons of UHF/2.4GHz/5GHz bands
Conclusion

• Design open UHF-MU-MIMO platform for side-by-side comparisons of UHF/2.4GHz/5GHz bands

• WURC:
Conclusion

• Design open UHF-MU-MIMO platform for side-by-side comparisons of UHF/2.4GHz/5GHz bands

• WURC:

• Our experiments confirm that UHF-band MU-MIMO exhibits decreased channel variability; however, they show that user separability is equivalent to 2.4/5GHz.
Conclusion

- Design open UHF-MU-MIMO platform for side-by-side comparisons of UHF/2.4GHz/5GHz bands

- **WURC:**

- Our experiments confirm that UHF-band MU-MIMO exhibits decreased channel variability; however, they show that user separability is equivalent to 2.4/5GHz.
 - **Channel Variability**\(\rightarrow\) Band dependent
Conclusion

• Design open UHF-MU-MIMO platform for side-by-side comparisons of UHF/2.4GHz/5GHz bands

• WURC:

• Our experiments confirm that UHF-band MU-MIMO exhibits decreased channel variability; however, they show that user separability is equivalent to 2.4/5GHz.
 • Channel Variability -> Band dependent
 • User Separability -> Environment dependent
Conclusion

• Design open UHF-MU-MIMO platform for side-by-side comparisons of UHF/2.4GHz/5GHz bands

• WURC:

• Our experiments confirm that UHF-band MU-MIMO exhibits decreased channel variability; however, they show that user separability is equivalent to 2.4/5GHz.
 • Channel Variability-\(\rightarrow\) Band dependent
 • User Separability-\(\rightarrow\) Environment dependent

• Thus, UHF-MU-MIMO leverages benefits of decreased channel variability (lower sounding rate) without suffering from decreased user separability