Beamforming on mobile devices: A first study

Hang Yu, Lin Zhong, Ashutosh Sabharwal, David Kao

http://www.recg.org
Two invariants for wireless

- Spectrum is scarce
- Hardware is cheap and getting cheaper
Passive directional antennas

Findings: ~ 3 dB gain

- Multifold throughput increase at network edge
- $\sim 50\%$ TX power reduction at network center
Can we go beyond 3 dB?
Beamforming?

- Studied in the past for use on cellular base station, 802.11 access points, vehicles, and even wireless sensor nodes, e.g., MobiSteer (MobiSys’07), R2D2 (MobiSys’09), DIRC (SIGCOMM’09)
Beamforming primer
Beamforming primer

Fixed transmission power
Is beamforming practical?

• Beamforming
 – Antenna array
 – Narrow beam
 – Power hungry

• Mobile devices
 – Small form factor
 – Rotate and move
 – Battery powered
Form factor?

Peak beamforming gain (dB)

Antenna spacing (wavelength)

0.3-0.4 \(\lambda\): 4.5-6 cm at 2 GHz
Form factor!

0.3-0.4 \(\lambda \) (4.5-6 cm at 2 GHz)
Rotation?
Rotation?

CSI estimation every 100 ms
Rotation!

CSI estimation every 10 ms
Power? (uplink only)

\[P = P_{\text{shared}} + N \cdot P_{\text{Circuit}} + \frac{P_{\text{TX}}}{\eta} \]
Tradeoff No. 1

\[P = P_{\text{shared}} + 1 \cdot P_{\text{Circuit}} + P_{TX} / \eta \]

Fixed receiver SNR
Tradeoff No. 1

\[P = P_{\text{shared}} + 2 \cdot P_{\text{Circuit}} + \frac{P_{\text{TX}}}{\eta} \]

Fixed receiver SNR
Tradeoff No. 1

\[P = P_{\text{shared}} + 3 \cdot P_{\text{Circuit}} + \frac{P_{\text{tx}}}{\eta} \]

Fixed receiver SNR
Tradeoff No. 1

\[P = P_{\text{shared}} + 4 \cdot P_{\text{Circuit}} + \frac{p_{tx}}{\eta} \]
Tradeoff No. 1

- Optimal number of antennas for efficiency

\[N_{opt} = a \cdot \sqrt{P_0 / P_{Circuit}} - b \cdot P_0 \]
Hardware is cheap & getting cheaper

\[P = P_{\text{shared}} + N \cdot P_{\text{Circuit}} + \frac{P_{\text{TX}}}{\eta} \]

Sources: IEEE Int. Solid-State Circuits Conferences (ISSCC) and IEEE Journal of Solid-State Circuits (JSSC)
Power!

- Beamforming with state-of-the-art multi-RF chain realization is already more efficient!

- Tradeoff No. 1 is increasingly profitable!
Beyond a single link
What the carrier wants:
Use all your antennas!
What you want:

\[N_{opt} = a \cdot \sqrt{P_O/P_{\text{Circuit}}} - b \cdot P_O \]
Tradeoff No. 2

- Network capacity vs. client efficiency
How can clients figure out its N without talking to each other?
BeamAdapt

• Distributed algorithm to minimize TX power under uplink capacity constraints
 – No explicit inter-client cooperation
 – Iterative
 – Guaranteed to converge
 – Converge in a few iterations in practice
 – Converge to a good solution in practice

• Can be built on top of uplink power control in cellular networks
WARPLab-based prototype
Received SNR stable

Client Node 2

Link SNR constraint: 5 dB
Power close to optimal

Link SNR constraint: 5 dB
UMTS; Client movement: 0-70 mph; Client rotation: 0-120 °/s
Power reduced

![Diagram showing client power consumption for CBR traffic under different conditions. The x-axis represents the number of clients (N) with values 1, 2, 4, and 8, and the y-axis represents client power consumption (mW) ranging from 0 to 1000 mW. The graph compares power consumption between Beamforming/Omni and BeamAdapt.]
Network throughput maintained

![Network Throughput Graph](image)

- Beamforming/Omni
- BeamAdapt

Network Throughput (b/s)

CBR traffic
Conclusions

• Beamforming is feasible for mobile devices
 • Lower-power uplink for mobile devices

• Distributed optimization feasible
Looking forward

• Benefits of beamforming orthogonal to other spectrum efficiency technologies such as network MIMO

• Network capacity implications
Treating interference as noise

Strong interference regime:
Far from optimal from information theoretic perspective
Treating interference as noise

Weak interference regime:
Existing architecture yields close to optimal capacity
http://www.recg.org